{"title":"Latent syntactic structure-based sentiment analysis","authors":"Viktor Hangya, Z. Szántó, Richárd Farkas","doi":"10.1109/CIAPP.2017.8167217","DOIUrl":null,"url":null,"abstract":"People share their opinions about things like products, movies and services using social media channels. The analysis of these textual contents for sentiments is a gold mine for marketing experts, thus automatic sentiment analysis is a popular area of applied artificial intelligence. We propose a latent syntactic structure-based approach for sentiment analysis which requires only sentence-level polarity labels for training. Our experiments on three domains (movie, IT products, restaurant) show that a sentiment analyzer that exploits syntactic parses and has access only to sentence-level polarity annotation for in-domain sentences can outperform state-of-the-art models that were trained on out-domain parse trees with sentiment annotation for each node of the trees. In practice, millions of sentence-level polarity annotations are usually available for a particular domain thus our approach is applicable for training a sentiment analyzer for a new domain while it can exploit the syntactic structure of sentences as well.","PeriodicalId":187056,"journal":{"name":"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIAPP.2017.8167217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
People share their opinions about things like products, movies and services using social media channels. The analysis of these textual contents for sentiments is a gold mine for marketing experts, thus automatic sentiment analysis is a popular area of applied artificial intelligence. We propose a latent syntactic structure-based approach for sentiment analysis which requires only sentence-level polarity labels for training. Our experiments on three domains (movie, IT products, restaurant) show that a sentiment analyzer that exploits syntactic parses and has access only to sentence-level polarity annotation for in-domain sentences can outperform state-of-the-art models that were trained on out-domain parse trees with sentiment annotation for each node of the trees. In practice, millions of sentence-level polarity annotations are usually available for a particular domain thus our approach is applicable for training a sentiment analyzer for a new domain while it can exploit the syntactic structure of sentences as well.