Adaptive filtering algorithm based on a wavelet packet tree for heart sound signal analysis

L. Cherif, S. Debbal
{"title":"Adaptive filtering algorithm based on a wavelet packet tree for heart sound signal analysis","authors":"L. Cherif, S. Debbal","doi":"10.1504/IJMEI.2018.10012105","DOIUrl":null,"url":null,"abstract":"In order to further highlight heart sound signals analysis, we developed an algorithm based on a wavelet packet tree; for possible discrimination depending on the severity of pathological cases for different heart sound signals. The algorithm functions select the most informative nodes combination of a wavelet packet tree as a basis for feature extraction. To generate this adaptive filter, we need to compute the best sub tree of an initial wavelet packet tree with respect for entropy type yardstick, the node combination with the lowest total cost is selected. The decomposition into wavelet packet offers a wavelet library organised according to their time-frequency analysis and location properties and therefore of pass-band filtering, according to a binary tree architecture. This architecture makes it possible to implement algorithms for searching for adapted bases to both the desired time-frequency properties and the analysed signal, which are conventionally called better bases.","PeriodicalId":193362,"journal":{"name":"Int. J. Medical Eng. Informatics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Medical Eng. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMEI.2018.10012105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In order to further highlight heart sound signals analysis, we developed an algorithm based on a wavelet packet tree; for possible discrimination depending on the severity of pathological cases for different heart sound signals. The algorithm functions select the most informative nodes combination of a wavelet packet tree as a basis for feature extraction. To generate this adaptive filter, we need to compute the best sub tree of an initial wavelet packet tree with respect for entropy type yardstick, the node combination with the lowest total cost is selected. The decomposition into wavelet packet offers a wavelet library organised according to their time-frequency analysis and location properties and therefore of pass-band filtering, according to a binary tree architecture. This architecture makes it possible to implement algorithms for searching for adapted bases to both the desired time-frequency properties and the analysed signal, which are conventionally called better bases.
基于小波包树的心音信号自适应滤波算法
为了进一步突出心音信号的分析,我们开发了一种基于小波包树的算法;根据病案的严重程度,对不同心音信号进行可能的区分。算法函数选择小波包树中信息量最大的节点组合作为特征提取的基础。为了产生这种自适应滤波器,我们需要计算初始小波包树的最佳子树,以熵型尺度为基准,选择总代价最低的节点组合。分解成小波包提供了一个小波库组织根据他们的时频分析和位置属性,因此通带滤波,根据二叉树结构。这种结构使得实现搜索适合所需时频特性和分析信号的基的算法成为可能,这些基通常被称为更好的基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信