Multimedia recommendation

Jialie Shen, Meng Wang, Shuicheng Yan, Peng Cui
{"title":"Multimedia recommendation","authors":"Jialie Shen, Meng Wang, Shuicheng Yan, Peng Cui","doi":"10.1145/2393347.2396554","DOIUrl":null,"url":null,"abstract":"Due to the rapid growth of online multimedia information, the problem of information overload has become more and more serious in recent decades. To address this problem, various multimedia recommendation technologies have been developed by different research communities (e.g., multimedia systems, information retrieval, and machine learning). Meanwhile, many commercial web systems (e.g., Flick, Youtube, and Last.fm) have successfully applied recommendation techniques to provide users personalized multimedia content and services in a convenient and flexible way. This tutorial focuses on exploring the state-of-the-art in multimedia recommendation. We also discuss the experience gained from developing existing systems and review key challenges associated with large-scale multimedia recommendation.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the rapid growth of online multimedia information, the problem of information overload has become more and more serious in recent decades. To address this problem, various multimedia recommendation technologies have been developed by different research communities (e.g., multimedia systems, information retrieval, and machine learning). Meanwhile, many commercial web systems (e.g., Flick, Youtube, and Last.fm) have successfully applied recommendation techniques to provide users personalized multimedia content and services in a convenient and flexible way. This tutorial focuses on exploring the state-of-the-art in multimedia recommendation. We also discuss the experience gained from developing existing systems and review key challenges associated with large-scale multimedia recommendation.
多媒体推荐
近几十年来,由于网络多媒体信息的快速增长,信息过载的问题变得越来越严重。为了解决这个问题,不同的研究团体开发了各种多媒体推荐技术(例如,多媒体系统,信息检索和机器学习)。同时,许多商业网络系统(如Flick、Youtube、Last.fm)已经成功地应用了推荐技术,方便灵活地为用户提供个性化的多媒体内容和服务。本教程的重点是探索多媒体推荐中的最新技术。我们还讨论了从开发现有系统中获得的经验,并回顾了与大规模多媒体推荐相关的主要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信