{"title":"Pricing VIX Derivatives with Infinite-Activity Jumps","authors":"Jiling Cao, Xinfeng Ruan, Shu Su, Wenjun Zhang","doi":"10.2139/ssrn.3478340","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a two-factor VIX model with infinite-activity jumps, which is a more realistic way to reduce errors in pricing VIX derivatives, compared with Mencía and Sentana (2013). Our two-factor model features central tendency, stochastic volatility and infinite-activity pure jump Lévy processes which include the variance gamma (VG) and the normal inverse Gaussian (NIG) processes as special cases. We find empirical evidence that the model with infinite-activity jumps is superior to the models with finite-activity jumps, particularly in pricing VIX options. As a result, infinite-activity jumps should not be ignored in pricing VIX derivatives.","PeriodicalId":367100,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Corporate Finance & Governance (Topic)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Corporate Finance & Governance (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3478340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate a two-factor VIX model with infinite-activity jumps, which is a more realistic way to reduce errors in pricing VIX derivatives, compared with Mencía and Sentana (2013). Our two-factor model features central tendency, stochastic volatility and infinite-activity pure jump Lévy processes which include the variance gamma (VG) and the normal inverse Gaussian (NIG) processes as special cases. We find empirical evidence that the model with infinite-activity jumps is superior to the models with finite-activity jumps, particularly in pricing VIX options. As a result, infinite-activity jumps should not be ignored in pricing VIX derivatives.