Data-Driven VICAR Modeling of Nonstationary Planetary Gearbox Vibration

Yuejian Chen, Gang Niu
{"title":"Data-Driven VICAR Modeling of Nonstationary Planetary Gearbox Vibration","authors":"Yuejian Chen, Gang Niu","doi":"10.1109/ICSMD57530.2022.10058256","DOIUrl":null,"url":null,"abstract":"Planetary gearbox fault detection is important in terms of life-threatening failure prevention and maintenance optimization. This paper focuses on the representation of the planetary gearbox baseline vibration signals via time series models. Faults can be detected by examining any changes in model residuals or parameters. We propose a modified varying index coefficient autoregression (VICAR) model that effectively makes use of the rotating speed while retaining the highly flexible nonlinearity modeling capacity of the VICAR model. The modification lies in separating the lagged predictor and rotating speed via independent smooth functions. Parameter estimation and variable selection methods were developed accordingly. An experimental study was conducted which reveals the superiority of the modified VICAR model in comparison with expanded VICAR and linear parameter varying autoregression models.","PeriodicalId":396735,"journal":{"name":"2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMD57530.2022.10058256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Planetary gearbox fault detection is important in terms of life-threatening failure prevention and maintenance optimization. This paper focuses on the representation of the planetary gearbox baseline vibration signals via time series models. Faults can be detected by examining any changes in model residuals or parameters. We propose a modified varying index coefficient autoregression (VICAR) model that effectively makes use of the rotating speed while retaining the highly flexible nonlinearity modeling capacity of the VICAR model. The modification lies in separating the lagged predictor and rotating speed via independent smooth functions. Parameter estimation and variable selection methods were developed accordingly. An experimental study was conducted which reveals the superiority of the modified VICAR model in comparison with expanded VICAR and linear parameter varying autoregression models.
非平稳行星齿轮箱振动的数据驱动VICAR建模
行星齿轮箱的故障检测对危及生命的故障预防和维修优化具有重要意义。研究了用时间序列模型表示行星齿轮箱基线振动信号的方法。故障可以通过检查模型残差或参数的任何变化来检测。提出了一种改进的变指标系数自回归(VICAR)模型,该模型有效地利用了转速,同时保留了VICAR模型高度灵活的非线性建模能力。改进的方法是通过独立的平滑函数分离滞后预测器和转速。据此提出了参数估计和变量选择方法。实验研究表明,改进的VICAR模型与扩展的VICAR模型和线性变参数自回归模型相比具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信