Face Super-Resolution Using Recurrent Generative Adversarial Network

Jie Xiu, Xiujie Qu, Haowei Yu
{"title":"Face Super-Resolution Using Recurrent Generative Adversarial Network","authors":"Jie Xiu, Xiujie Qu, Haowei Yu","doi":"10.1109/ITOEC53115.2022.9734461","DOIUrl":null,"url":null,"abstract":"Theface super-resolution (SR) networks based on deep learning have more advanced performance than traditional SR algorithms. However, facial key components are difficult to reconstruct because the adjacent pixels have great change. Moreover, most face SR networks only focus on the performance and ignore the number of parameters. To solve the above problems, we propose the face super-resolution network using recurrent generative adversarial network (FSRRGAN). The generator is the face SR recurrent generator (FSRRG) with dense iterative up-down sampling blocks as the basic unit. It can reduce the number of parameters and effectively improve the reconstruction performance combined with the relativistic average patch discriminator (RAPD). We use the facial perceptual similarity distance (FPSD) loss to replace the traditional perceptual loss. The experimental results show that our network has excellent performance both qualitatively and quantitatively on 4x and 8x face reconstruction.","PeriodicalId":127300,"journal":{"name":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","volume":"31 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITOEC53115.2022.9734461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Theface super-resolution (SR) networks based on deep learning have more advanced performance than traditional SR algorithms. However, facial key components are difficult to reconstruct because the adjacent pixels have great change. Moreover, most face SR networks only focus on the performance and ignore the number of parameters. To solve the above problems, we propose the face super-resolution network using recurrent generative adversarial network (FSRRGAN). The generator is the face SR recurrent generator (FSRRG) with dense iterative up-down sampling blocks as the basic unit. It can reduce the number of parameters and effectively improve the reconstruction performance combined with the relativistic average patch discriminator (RAPD). We use the facial perceptual similarity distance (FPSD) loss to replace the traditional perceptual loss. The experimental results show that our network has excellent performance both qualitatively and quantitatively on 4x and 8x face reconstruction.
基于循环生成对抗网络的人脸超分辨率
基于深度学习的人脸超分辨网络比传统的人脸超分辨算法具有更高的性能。然而,人脸关键成分由于其相邻像素的变化较大而难以重建。此外,大多数面向SR网络只关注性能,而忽略了参数的数量。为了解决上述问题,我们提出了基于递归生成对抗网络(FSRRGAN)的人脸超分辨网络。发生器为以密集上下迭代采样块为基本单元的人脸SR循环发生器(FSRRG)。它与相对论平均patch discriminator (RAPD)相结合,可以减少参数数量,有效提高重建性能。我们用人脸感知相似距离(FPSD)损失来代替传统的感知损失。实验结果表明,我们的网络在4倍和8倍人脸重构上都有很好的定性和定量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信