In Situ Leaf Classification Using Histograms of Oriented Gradients

A. Olsen, Sung-Ji Han, Brendan Calvert, P. Ridd, Owen Kenny
{"title":"In Situ Leaf Classification Using Histograms of Oriented Gradients","authors":"A. Olsen, Sung-Ji Han, Brendan Calvert, P. Ridd, Owen Kenny","doi":"10.1109/DICTA.2015.7371274","DOIUrl":null,"url":null,"abstract":"Histograms of Oriented Gradients (HOGs) have proven to be a robust feature set for many visual object recognition applications. In this paper we investigate a simple but powerful approach to make use of the HOG feature set for in situ leaf classification. The contributions of this work are threefold. Firstly, we present a novel method for segmenting leaves from a textured background. Secondly, we investigate a scale and rotation invariant enhancement of the HOG feature set for texture based leaf classification - whose results compare well with a multi-feature probabilistic neural network classifier on a benchmark data set. And finally, we introduce an in situ data set containing 337 images of Lantana camara - a weed of national significance in the Australian landscape - and neighbouring flora, upon which our proposed classifier achieves high accuracy (86.07%) in reasonable time and is thus viable for real-time detection and control of Lantana camara.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"471 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Histograms of Oriented Gradients (HOGs) have proven to be a robust feature set for many visual object recognition applications. In this paper we investigate a simple but powerful approach to make use of the HOG feature set for in situ leaf classification. The contributions of this work are threefold. Firstly, we present a novel method for segmenting leaves from a textured background. Secondly, we investigate a scale and rotation invariant enhancement of the HOG feature set for texture based leaf classification - whose results compare well with a multi-feature probabilistic neural network classifier on a benchmark data set. And finally, we introduce an in situ data set containing 337 images of Lantana camara - a weed of national significance in the Australian landscape - and neighbouring flora, upon which our proposed classifier achieves high accuracy (86.07%) in reasonable time and is thus viable for real-time detection and control of Lantana camara.
基于定向梯度直方图的原位叶片分类
定向梯度直方图(hog)已被证明是许多视觉对象识别应用的强大特征集。在本文中,我们研究了一种简单而强大的方法来利用HOG特征集进行原位叶片分类。这项工作的贡献是三重的。首先,我们提出了一种从纹理背景中分割叶子的新方法。其次,我们研究了HOG特征集的尺度和旋转不变性增强,用于基于纹理的叶子分类,其结果与多特征概率神经网络分类器在基准数据集上的结果相比较。最后,我们引入了包含337幅Lantana camara(澳大利亚景观中具有国家意义的杂草)及其邻近植物群的原位数据集,在此基础上,我们提出的分类器在合理的时间内达到了很高的准确率(86.07%),从而可以实时检测和控制Lantana camara。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信