An Efficiency Random Forest Algorithm for Classification of Patients with Kidney Dysfunction

Narumol Chumuang, Nuttawoot Meesang, M. Ketcham, Worawut Yimyam, Jiragorn Chalermdit, Nawarat Wittayakhom, Patiyuth Pramkeaw
{"title":"An Efficiency Random Forest Algorithm for Classification of Patients with Kidney Dysfunction","authors":"Narumol Chumuang, Nuttawoot Meesang, M. Ketcham, Worawut Yimyam, Jiragorn Chalermdit, Nawarat Wittayakhom, Patiyuth Pramkeaw","doi":"10.1109/iSAI-NLP51646.2020.9376785","DOIUrl":null,"url":null,"abstract":"In this paper, we presented a separate separation and comparison of data of people with renal impairment. By collecting information on CKD. The data was collected for selection in data mining using the CKD data set from UCI Machine Learn Repository to compare the classification of 400 CKD patients, comprising 25 attributes and dividing into two class, which one is for patients with CKD and those who do not suffer from CKD. In the experimental designing with 5-folds cross validation test, the result is separation by technique as Random Forest shows an accuracy of 100 %, BayesNet 98.75 %, Stochastic Gradient Descent (SGD) 98.25%, Sequential Minimal optimization (SMO) 95.75%, Multinomial Logistic Regression (MLR) 95.75% respectively.","PeriodicalId":311014,"journal":{"name":"2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP51646.2020.9376785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we presented a separate separation and comparison of data of people with renal impairment. By collecting information on CKD. The data was collected for selection in data mining using the CKD data set from UCI Machine Learn Repository to compare the classification of 400 CKD patients, comprising 25 attributes and dividing into two class, which one is for patients with CKD and those who do not suffer from CKD. In the experimental designing with 5-folds cross validation test, the result is separation by technique as Random Forest shows an accuracy of 100 %, BayesNet 98.75 %, Stochastic Gradient Descent (SGD) 98.25%, Sequential Minimal optimization (SMO) 95.75%, Multinomial Logistic Regression (MLR) 95.75% respectively.
肾功能不全患者分类的高效随机森林算法
在本文中,我们提出了一个单独的分离和比较的数据与肾功能损害的人。通过收集CKD的信息。使用UCI机器学习存储库的CKD数据集收集数据进行数据挖掘选择,比较400名CKD患者的分类,包括25个属性,分为两类,一类是CKD患者和非CKD患者。在5次交叉验证试验设计中,采用随机森林分离的准确率为100%,BayesNet为98.75%,随机梯度下降法(SGD)为98.25%,顺序最小优化法(SMO)为95.75%,多项逻辑回归法(MLR)为95.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信