{"title":"Special Unipotent Arthur Packets for Real Reductive Groups","authors":"J. Fernandes","doi":"10.13016/QMF9-NTWP","DOIUrl":null,"url":null,"abstract":"We compute special unipotent Arthur packets for real reductive groups in many cases. We list the cases that lead to incomplete answers, and in those cases, provide a suitable set of representations that could lead to a complete description of the special Arthur packet. In the process of achieving this goal we classify theta forms of a given even complex nilpotent orbit, and find methods to compute the associated varieties of irreducible group representations.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13016/QMF9-NTWP","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We compute special unipotent Arthur packets for real reductive groups in many cases. We list the cases that lead to incomplete answers, and in those cases, provide a suitable set of representations that could lead to a complete description of the special Arthur packet. In the process of achieving this goal we classify theta forms of a given even complex nilpotent orbit, and find methods to compute the associated varieties of irreducible group representations.