Sift Descriptors Modeling and Application in Texture Image Classification

Oussama Zeglazi, A. Amine, M. Rziza
{"title":"Sift Descriptors Modeling and Application in Texture Image Classification","authors":"Oussama Zeglazi, A. Amine, M. Rziza","doi":"10.1109/CGIV.2016.58","DOIUrl":null,"url":null,"abstract":"This paper presents a new statistical model for describing real textured images. Our model is based on the observation that the Scale-Invariant Feature Transform (SIFT) descriptors extracted from a given image can be properly modeled by the Gamma distribution. The maximum-likelihood algorithm was used to estimate the two parameters of the Gamma distribution. The efficiency of the proposed approach was validated in the classification stage. Experiments were conducted on Brodatz database. Results demonstrated that our model leads to good improvement in term of the accuracy rate.","PeriodicalId":351561,"journal":{"name":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","volume":"431 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2016.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents a new statistical model for describing real textured images. Our model is based on the observation that the Scale-Invariant Feature Transform (SIFT) descriptors extracted from a given image can be properly modeled by the Gamma distribution. The maximum-likelihood algorithm was used to estimate the two parameters of the Gamma distribution. The efficiency of the proposed approach was validated in the classification stage. Experiments were conducted on Brodatz database. Results demonstrated that our model leads to good improvement in term of the accuracy rate.
Sift描述子建模及其在纹理图像分类中的应用
本文提出了一种描述真实纹理图像的统计模型。我们的模型是基于从给定图像中提取的尺度不变特征变换(SIFT)描述符可以通过Gamma分布正确建模的观察。采用极大似然算法对Gamma分布的两个参数进行估计。在分类阶段验证了该方法的有效性。实验在Brodatz数据库上进行。结果表明,该模型在准确率方面有较好的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信