Stability analysis for a class of delay neural networks with nonlinear perturbations

Ruliang Wang, Hong Lei, Jin Wang
{"title":"Stability analysis for a class of delay neural networks with nonlinear perturbations","authors":"Ruliang Wang, Hong Lei, Jin Wang","doi":"10.1109/ICCSE.2009.5228504","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a class of time-delay dynamical neural networks with nonlinear perturbation. The nonlinear perturbation functions are assumed bounded. we derive a robust stability criterion independent of delay. The sufficient criterion is given in terms of linear matrix inequality (LMI). The checking for robust stability of time-delay dynamical neural networks with nonlinear perturbation by our result can be carried out rather simply, and convenient for the application. The applicability of our results is demonstrated by means of a specific example.","PeriodicalId":303484,"journal":{"name":"2009 4th International Conference on Computer Science & Education","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Conference on Computer Science & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2009.5228504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a class of time-delay dynamical neural networks with nonlinear perturbation. The nonlinear perturbation functions are assumed bounded. we derive a robust stability criterion independent of delay. The sufficient criterion is given in terms of linear matrix inequality (LMI). The checking for robust stability of time-delay dynamical neural networks with nonlinear perturbation by our result can be carried out rather simply, and convenient for the application. The applicability of our results is demonstrated by means of a specific example.
一类具有非线性扰动的时滞神经网络的稳定性分析
本文考虑一类具有非线性扰动的时滞动态神经网络。假设非线性扰动函数是有界的。我们得到了一个与时滞无关的鲁棒稳定性判据。用线性矩阵不等式(LMI)给出了充分判据。用本文的结果对具有非线性扰动的时滞动态神经网络的鲁棒稳定性进行了简单的检验,便于应用。通过一个具体的算例说明了所得结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信