Feature Selection Modelling for Percutaneous Absorption across Synthetic Membranes

Weam M. Binjumah, Yi Sun, M. Hewitt, R. Adams, N. Davey, D. Gullick, S. Wilkinson, M. Cronin, G. Moss
{"title":"Feature Selection Modelling for Percutaneous Absorption across Synthetic Membranes","authors":"Weam M. Binjumah, Yi Sun, M. Hewitt, R. Adams, N. Davey, D. Gullick, S. Wilkinson, M. Cronin, G. Moss","doi":"10.1109/ICTAI.2014.155","DOIUrl":null,"url":null,"abstract":"Predicting the rate of percutaneous absorption across mammalian and artificial membranes is a complex problem. In previous studies, prediction and accuracy are approached using different machine learning models. Results show that Gaussian processes provided the best result, based on a range of statistical measures. In general the ultimate aim of these machine learning experiments is to try to understand, analyze and predict the percutaneous absorption of drugs across human skin. One way to do this is to select the best set of chemical descriptors and the dataset of synthetic (Polydimethyl siloxane, PDMS) membranes, containing so many descriptors, is considered a suitable dataset to use in this study. Hence, one of the main purposes of the study is to use feature selection methods to select the molecular properties that exert the most important influence on percutaneous absorption across PDMS membranes, in the hope that this will better inform studies on human skin.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predicting the rate of percutaneous absorption across mammalian and artificial membranes is a complex problem. In previous studies, prediction and accuracy are approached using different machine learning models. Results show that Gaussian processes provided the best result, based on a range of statistical measures. In general the ultimate aim of these machine learning experiments is to try to understand, analyze and predict the percutaneous absorption of drugs across human skin. One way to do this is to select the best set of chemical descriptors and the dataset of synthetic (Polydimethyl siloxane, PDMS) membranes, containing so many descriptors, is considered a suitable dataset to use in this study. Hence, one of the main purposes of the study is to use feature selection methods to select the molecular properties that exert the most important influence on percutaneous absorption across PDMS membranes, in the hope that this will better inform studies on human skin.
跨合成膜的经皮吸收特征选择模型
预测哺乳动物和人工膜的经皮吸收率是一个复杂的问题。在以前的研究中,使用不同的机器学习模型来处理预测和准确性。结果表明,基于一系列统计度量,高斯过程提供了最好的结果。总的来说,这些机器学习实验的最终目的是试图理解、分析和预测药物在人体皮肤上的经皮吸收。这样做的一种方法是选择最好的化学描述符集,而合成(聚二甲基硅氧烷,PDMS)膜的数据集包含如此多的描述符,被认为是本研究中使用的合适数据集。因此,本研究的主要目的之一是利用特征选择方法选择对PDMS膜经皮吸收影响最大的分子特性,以期更好地为人体皮肤研究提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信