Neuromorphic Recurrent Spiking Neural Networks for EMG Gesture Classification and Low Power Implementation on Loihi

Ahmed Shaban, S. S. Bezugam, M. Suri
{"title":"Neuromorphic Recurrent Spiking Neural Networks for EMG Gesture Classification and Low Power Implementation on Loihi","authors":"Ahmed Shaban, S. S. Bezugam, M. Suri","doi":"10.1109/ISCAS46773.2023.10181510","DOIUrl":null,"url":null,"abstract":"In this work, we show an efficient Electromyograph (EMG) gesture recognition using Double Exponential Adaptive Threshold (DEXAT) neuron based Recurrent Spiking Neural Network (RSNN). Our network achieves a classification accuracy of 90% while using lesser number of neurons compared to the best reported prior art on Roshambo EMG dataset. Further, to illustrate the benefits of dedicated neuromorphic hardware, we show hardware implementation of DEXAT neuron using multicompartment methodology on Intel's neuromorphic Loihi chip. RSNN implementation on Loihi (Nahuku 32) achieves significant energy/latency benefits of ~983X/19X compared to GPU for batch size = 50.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10181510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we show an efficient Electromyograph (EMG) gesture recognition using Double Exponential Adaptive Threshold (DEXAT) neuron based Recurrent Spiking Neural Network (RSNN). Our network achieves a classification accuracy of 90% while using lesser number of neurons compared to the best reported prior art on Roshambo EMG dataset. Further, to illustrate the benefits of dedicated neuromorphic hardware, we show hardware implementation of DEXAT neuron using multicompartment methodology on Intel's neuromorphic Loihi chip. RSNN implementation on Loihi (Nahuku 32) achieves significant energy/latency benefits of ~983X/19X compared to GPU for batch size = 50.
神经形态递归尖峰神经网络在肌电信号手势分类和Loihi上的低功耗实现
在这项工作中,我们展示了使用基于双指数自适应阈值(DEXAT)神经元的循环尖峰神经网络(RSNN)进行有效的肌电(EMG)手势识别。我们的网络在使用较少的神经元数量的同时,在Roshambo肌电信号数据集上实现了90%的分类准确率。此外,为了说明专用神经形态硬件的好处,我们展示了在英特尔的神经形态Loihi芯片上使用多室方法的DEXAT神经元的硬件实现。在Loihi (Nahuku 32)上的RSNN实现与批处理大小= 50的GPU相比,实现了显著的能量/延迟优势~983X/19X。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信