Affinization of monoidal categories

Youssef Mousaaid, Alistair Savage
{"title":"Affinization of monoidal categories","authors":"Youssef Mousaaid, Alistair Savage","doi":"10.5802/jep.158","DOIUrl":null,"url":null,"abstract":"We define the affinization of an arbitrary monoidal category $\\mathcal{C}$, corresponding to the category of $\\mathcal{C}$-diagrams on the cylinder. We also give an alternative characterization in terms of adjoining dot generators to $\\mathcal{C}$. The affinization formalizes and unifies many constructions appearing in the literature. In particular, we describe a large number of examples coming from Hecke-type algebras, braids, tangles, and knot invariants. When $\\mathcal{C}$ is rigid, its affinization is isomorphic to its horizontal trace, although the two definitions look quite different. In general, the affinization and the horizontal trace are not isomorphic.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We define the affinization of an arbitrary monoidal category $\mathcal{C}$, corresponding to the category of $\mathcal{C}$-diagrams on the cylinder. We also give an alternative characterization in terms of adjoining dot generators to $\mathcal{C}$. The affinization formalizes and unifies many constructions appearing in the literature. In particular, we describe a large number of examples coming from Hecke-type algebras, braids, tangles, and knot invariants. When $\mathcal{C}$ is rigid, its affinization is isomorphic to its horizontal trace, although the two definitions look quite different. In general, the affinization and the horizontal trace are not isomorphic.
一元范畴的亲和
我们定义了任意一元范畴$\mathcal{C}$的仿射,它对应于柱面上$\mathcal{C}$-图的范畴。我们还给出了$\mathcal{C}$中相邻点生成器的另一种表征。亲和形式化并统一了文学中出现的许多结构。特别地,我们描述了大量来自hecke型代数、辫状、缠结和结不变量的例子。当$\mathcal{C}$是刚性时,它的亲和与它的水平轨迹是同构的,尽管这两个定义看起来非常不同。一般来说,亲和和水平迹线是不同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信