Rough Inclusion Functions and Similarity Indices

Anna Gomolinska, M. Wolski
{"title":"Rough Inclusion Functions and Similarity Indices","authors":"Anna Gomolinska, M. Wolski","doi":"10.3233/FI-2014-1068","DOIUrl":null,"url":null,"abstract":"Rough inclusion functions are mappings considered in rough set theory with which one can measure the degree of inclusion of a set (information granule) in a set (information granule) in line with rough mereology. On the other hand, similarity indices are mappings used in cluster analysis with which one can compare clusterings, and clustering methods with respect to similarity. In this article we show that a large number of similarity indices, known from the literature, can be generated by three simple rough inclusion functions, the standard rough inclusion function included.","PeriodicalId":286395,"journal":{"name":"International Workshop on Concurrency, Specification and Programming","volume":"619 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Concurrency, Specification and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FI-2014-1068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Rough inclusion functions are mappings considered in rough set theory with which one can measure the degree of inclusion of a set (information granule) in a set (information granule) in line with rough mereology. On the other hand, similarity indices are mappings used in cluster analysis with which one can compare clusterings, and clustering methods with respect to similarity. In this article we show that a large number of similarity indices, known from the literature, can be generated by three simple rough inclusion functions, the standard rough inclusion function included.
粗糙包含函数和相似指数
粗糙包含函数是粗糙集理论中考虑的映射,人们可以用它来衡量一个集合(信息颗粒)在一个集合(信息颗粒)中的包含程度。另一方面,相似性指数是聚类分析中使用的映射,可以比较聚类和聚类方法的相似性。在本文中,我们证明了从文献中已知的大量相似度指标可以由三种简单的粗包含函数生成,其中包括标准粗包含函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信