Face recognition system with automatic training samples selection using self-organizing map

V. Jirka, Matej Feder, J. Pavlovičová, M. Oravec
{"title":"Face recognition system with automatic training samples selection using self-organizing map","authors":"V. Jirka, Matej Feder, J. Pavlovičová, M. Oravec","doi":"10.1109/ELMAR.2014.6923306","DOIUrl":null,"url":null,"abstract":"The paper deals with evaluation of automatic training samples selection method based on self-organizing map (SOM) in face recognition systems. In earlier paper [1] we presented an approach for automatic training samples selection using various clustering algorithms with good results on the CMU PIE face database. We showed that with the use of SOM we can achieve a good training samples selection. In this paper we further evaluate this approach with the use of face recognition systems based on principal component analysis (PCA) and support vector machines (SVM). We compare the results with random (uncontrolled and controlled) training samples selection and we evaluate the recognition accuracy of each method.","PeriodicalId":424325,"journal":{"name":"Proceedings ELMAR-2014","volume":"464 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ELMAR-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2014.6923306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper deals with evaluation of automatic training samples selection method based on self-organizing map (SOM) in face recognition systems. In earlier paper [1] we presented an approach for automatic training samples selection using various clustering algorithms with good results on the CMU PIE face database. We showed that with the use of SOM we can achieve a good training samples selection. In this paper we further evaluate this approach with the use of face recognition systems based on principal component analysis (PCA) and support vector machines (SVM). We compare the results with random (uncontrolled and controlled) training samples selection and we evaluate the recognition accuracy of each method.
基于自组织地图的人脸识别自动训练样本选择系统
研究了人脸识别系统中基于自组织映射(SOM)的自动训练样本选择方法的评价。在之前的论文[1]中,我们提出了一种使用各种聚类算法自动训练样本选择的方法,在CMU PIE人脸数据库上取得了良好的效果。我们表明,使用SOM可以实现很好的训练样本选择。在本文中,我们使用基于主成分分析(PCA)和支持向量机(SVM)的人脸识别系统进一步评估这种方法。我们将结果与随机(非受控和受控)训练样本选择进行比较,并评估每种方法的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信