Managed N-gram language model based on Hadoop framework and a Hbase tables

Tahani M. Allam, A. Sallam, H. M. Abdullkader
{"title":"Managed N-gram language model based on Hadoop framework and a Hbase tables","authors":"Tahani M. Allam, A. Sallam, H. M. Abdullkader","doi":"10.1109/INFOS.2014.7036678","DOIUrl":null,"url":null,"abstract":"N-grams are a building block in natural language processing and information retrieval. It is a sequence of a string data like contiguous words or other tokens in text documents. In this work, we study how N-gram can be computed efficiently using a MapReduce for distributed data processing and a distributed database named Hbase This technique is applied to construct the training and testing processes using Hadoop MapReduce framework and Hbase. We proposed to focus on the time cost and storage size of the model and exploring different structures of Hbase table. By constructing and comparing a different table structures on training 100 million words for unigram, bigram and trigram models we suggest a table based on half ngram structure is a more suitable choice for distributed language model. The results of this work can be applied in the cloud computing and other large scale distributed language processing areas.","PeriodicalId":394058,"journal":{"name":"2014 9th International Conference on Informatics and Systems","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Informatics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOS.2014.7036678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

N-grams are a building block in natural language processing and information retrieval. It is a sequence of a string data like contiguous words or other tokens in text documents. In this work, we study how N-gram can be computed efficiently using a MapReduce for distributed data processing and a distributed database named Hbase This technique is applied to construct the training and testing processes using Hadoop MapReduce framework and Hbase. We proposed to focus on the time cost and storage size of the model and exploring different structures of Hbase table. By constructing and comparing a different table structures on training 100 million words for unigram, bigram and trigram models we suggest a table based on half ngram structure is a more suitable choice for distributed language model. The results of this work can be applied in the cloud computing and other large scale distributed language processing areas.
基于Hadoop框架和Hbase表的管理N-gram语言模型
n图是自然语言处理和信息检索的重要组成部分。它是字符串数据的序列,如文本文档中的连续单词或其他标记。本文研究了如何利用分布式数据处理的MapReduce和分布式数据库Hbase高效地计算N-gram,并利用Hadoop MapReduce框架和Hbase构建训练和测试过程。我们提出关注模型的时间成本和存储大小,探索Hbase表的不同结构。通过构建和比较单元、双元和三元模型在1亿字训练中的不同表结构,我们认为基于半元结构的表是分布式语言模型更合适的选择。研究结果可应用于云计算等大规模分布式语言处理领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信