Performance analysis and optimization of decision tree classifiers on embedded devices: work-in-progress

A. Krishnakumar, Ümit Y. Ogras
{"title":"Performance analysis and optimization of decision tree classifiers on embedded devices: work-in-progress","authors":"A. Krishnakumar, Ümit Y. Ogras","doi":"10.1145/3477244.3477618","DOIUrl":null,"url":null,"abstract":"Decision trees (DTs) offer a popular implementation choice for machine learning classifiers since they are highly interpretable and easy to use. Resource management decision overheads must be minimal in embedded systems to meet latency targets and deadline constraints. While the literature has preferred hardware architectures for DTs to meet latency targets, they are not suitable for ultra-low latency applications due to their data movement overheads despite the parallelism they offer. Therefore, we propose software optimization techniques for decision trees. The proposed DTs achieve lower than 50 ns latencies for depth 12, making them highly suitable for classification in embedded resource management.","PeriodicalId":354206,"journal":{"name":"Proceedings of the 2021 International Conference on Embedded Software","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Embedded Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477244.3477618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Decision trees (DTs) offer a popular implementation choice for machine learning classifiers since they are highly interpretable and easy to use. Resource management decision overheads must be minimal in embedded systems to meet latency targets and deadline constraints. While the literature has preferred hardware architectures for DTs to meet latency targets, they are not suitable for ultra-low latency applications due to their data movement overheads despite the parallelism they offer. Therefore, we propose software optimization techniques for decision trees. The proposed DTs achieve lower than 50 ns latencies for depth 12, making them highly suitable for classification in embedded resource management.
嵌入式设备上决策树分类器的性能分析和优化:正在进行中
决策树(dt)为机器学习分类器提供了一种流行的实现选择,因为它们具有高度可解释性和易于使用。嵌入式系统中的资源管理决策开销必须最小化,以满足延迟目标和截止日期限制。虽然文献倾向于使用硬件架构来满足延迟目标,但它们不适合超低延迟应用程序,因为尽管它们提供并行性,但它们的数据移动开销很大。因此,我们提出了决策树的软件优化技术。所提出的dt在深度12的延迟低于50 ns,使其非常适合于嵌入式资源管理中的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信