Mapping Missing Population in Rural India: A Deep Learning Approach with Satellite Imagery

Wenjie Hu, Jay Patel, Zoe-Alanah Robert, P. Novosad, S. Asher, Zhongyi Tang, M. Burke, D. Lobell, Stefano Ermon
{"title":"Mapping Missing Population in Rural India: A Deep Learning Approach with Satellite Imagery","authors":"Wenjie Hu, Jay Patel, Zoe-Alanah Robert, P. Novosad, S. Asher, Zhongyi Tang, M. Burke, D. Lobell, Stefano Ermon","doi":"10.1145/3306618.3314263","DOIUrl":null,"url":null,"abstract":"Millions of people worldwide are absent from their country's census. Accurate, current, and granular population metrics are critical to improving government allocation of resources, to measuring disease control, to responding to natural disasters, and to studying any aspect of human life in these communities. Satellite imagery can provide sufficient information to build a population map without the cost and time of a government census. We present two Convolutional Neural Network (CNN) architectures which efficiently and effectively combine satellite imagery inputs from multiple sources to accurately predict the population density of a region. In this paper, we use satellite imagery from rural villages in India and population labels from the 2011 SECC census. Our best model achieves better performance than previous papers as well as LandScan, a community standard for global population distribution.","PeriodicalId":418125,"journal":{"name":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","volume":"65 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306618.3314263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Millions of people worldwide are absent from their country's census. Accurate, current, and granular population metrics are critical to improving government allocation of resources, to measuring disease control, to responding to natural disasters, and to studying any aspect of human life in these communities. Satellite imagery can provide sufficient information to build a population map without the cost and time of a government census. We present two Convolutional Neural Network (CNN) architectures which efficiently and effectively combine satellite imagery inputs from multiple sources to accurately predict the population density of a region. In this paper, we use satellite imagery from rural villages in India and population labels from the 2011 SECC census. Our best model achieves better performance than previous papers as well as LandScan, a community standard for global population distribution.
绘制印度农村失踪人口:卫星图像的深度学习方法
全世界有数百万人没有参加他们国家的人口普查。准确、及时和精细的人口指标对于改善政府资源分配、衡量疾病控制、应对自然灾害以及研究这些社区中人类生活的任何方面都至关重要。卫星图像可以提供足够的信息来绘制人口地图,而无需政府普查的成本和时间。我们提出了两种卷积神经网络(CNN)架构,有效地结合来自多个来源的卫星图像输入来准确预测一个地区的人口密度。在本文中,我们使用了印度农村的卫星图像和2011年SECC人口普查的人口标签。我们最好的模型比以前的论文以及全球人口分布的社区标准LandScan取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信