Optimized Geometric Hermite Curve Based on Curve Length Minimization

Jing Chi, Yunfeng Zhang, Caiming Zhang
{"title":"Optimized Geometric Hermite Curve Based on Curve Length Minimization","authors":"Jing Chi, Yunfeng Zhang, Caiming Zhang","doi":"10.1109/CIT.2008.WORKSHOPS.64","DOIUrl":null,"url":null,"abstract":"The magnitudes of the endpoint tangent vectors are optimized in the Hermite interpolation process so that the curve length of the optimized geometric Hermite curve is a minimum. The tangent angle constraints ensuring an optimized geometric Hermite curve geometrically smooth are discussed. For the cases in which the given tangent vectors do not satisfy the constraints, new methods for constructing 3-segment composite optimized geometric Hermite curves are presented. Examples have been presented to show that combination of these new methods with those based on strain energy minimization and curve variation minimization can get pleasant results in all tangent angle regions.","PeriodicalId":155998,"journal":{"name":"2008 IEEE 8th International Conference on Computer and Information Technology Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 8th International Conference on Computer and Information Technology Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIT.2008.WORKSHOPS.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The magnitudes of the endpoint tangent vectors are optimized in the Hermite interpolation process so that the curve length of the optimized geometric Hermite curve is a minimum. The tangent angle constraints ensuring an optimized geometric Hermite curve geometrically smooth are discussed. For the cases in which the given tangent vectors do not satisfy the constraints, new methods for constructing 3-segment composite optimized geometric Hermite curves are presented. Examples have been presented to show that combination of these new methods with those based on strain energy minimization and curve variation minimization can get pleasant results in all tangent angle regions.
基于曲线长度最小化的几何埃尔米特曲线优化
在Hermite插值过程中对端点切向量的大小进行了优化,使优化后的几何Hermite曲线的曲线长度最小。讨论了保证优化后的几何埃尔米特曲线几何光滑的切角约束。针对给定切向量不满足约束条件的情况,提出了构造3段复合优化几何Hermite曲线的新方法。算例表明,将这些新方法与基于应变能最小化和曲线变化最小化的方法相结合,在所有切角区域都能得到令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信