Canonical framework for describing suboptimum radar space-time adaptive processing (STAP) techniques

S. Grève, F. Lapierre, Jacques. Verly, F. Lapierre, Jacques. Verly
{"title":"Canonical framework for describing suboptimum radar space-time adaptive processing (STAP) techniques","authors":"S. Grève, F. Lapierre, Jacques. Verly, F. Lapierre, Jacques. Verly","doi":"10.1109/NRC.2004.1316471","DOIUrl":null,"url":null,"abstract":"We address the problem of detecting slow moving targets from a moving radar system using space-time adaptive processing (STAP) techniques. Optimum interference rejection is known to require the estimation and the subsequent inversion of an interference-plus-noise covariance matrix. To reduce the number of training samples involved in the estimation and the computational cost inherent to the inversion, many suboptimum STAP techniques have been proposed. Earlier attempts at unifying these techniques had a limited scope. In this paper, we propose a new canonical framework that unifies all of the STAP methods we are aware of. This framework can also be generalized to include the estimation of the covariance matrix and the compensation of the range dependence; it applies to monostatic and bistatic configurations. We also propose a new decomposition of the CSNR performance metric that can be used to understand the performance degradation specifically due to the use of a suboptimum method.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We address the problem of detecting slow moving targets from a moving radar system using space-time adaptive processing (STAP) techniques. Optimum interference rejection is known to require the estimation and the subsequent inversion of an interference-plus-noise covariance matrix. To reduce the number of training samples involved in the estimation and the computational cost inherent to the inversion, many suboptimum STAP techniques have been proposed. Earlier attempts at unifying these techniques had a limited scope. In this paper, we propose a new canonical framework that unifies all of the STAP methods we are aware of. This framework can also be generalized to include the estimation of the covariance matrix and the compensation of the range dependence; it applies to monostatic and bistatic configurations. We also propose a new decomposition of the CSNR performance metric that can be used to understand the performance degradation specifically due to the use of a suboptimum method.
描述次优雷达时空自适应处理(STAP)技术的规范框架
我们利用时空自适应处理(STAP)技术解决了从运动雷达系统中检测慢速运动目标的问题。已知最优干扰抑制需要对干扰加噪声协方差矩阵进行估计和随后的反演。为了减少估计中涉及的训练样本数量和反演固有的计算成本,人们提出了许多次优STAP技术。早期统一这些技术的尝试范围有限。在本文中,我们提出了一个新的规范框架,它统一了我们所知道的所有STAP方法。该框架也可以推广到协方差矩阵的估计和距离相关的补偿;它适用于单稳态和双稳态配置。我们还提出了一种新的CSNR性能指标分解方法,可以用来理解由于使用次优方法而导致的性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信