Irregular Wave Simulation and its Impact on Riser Extreme Response for a Production Semi

Shaosong Zhang, Yongming Cheng, Yuanlang Cai, Ning He, Xiaolong Yang, Z. Cao
{"title":"Irregular Wave Simulation and its Impact on Riser Extreme Response for a Production Semi","authors":"Shaosong Zhang, Yongming Cheng, Yuanlang Cai, Ning He, Xiaolong Yang, Z. Cao","doi":"10.1115/omae2020-19032","DOIUrl":null,"url":null,"abstract":"\n Steel Catenary Risers (SCRs) are widely used in deepwater and ultra-deepwater field developments. The dynamic strength of SCRs is a concern in terms of the global performance. The analysis results are quite scattered in many cases due to the nature of the irregular wave stochastic properties. The widely accepted approach to predict the riser dynamic response in the irregular seas is to run the multiple time domain simulations based on different random seeds. This paper will address the impacts on the predicted riser dynamic response due to the random seeds selection. The discussion is based on the independent engineering verification work for a production Semi project in South China Sea.\n The site specific irregular waves are usually defined by not only the wave spectrum, but also the properties of individual waves, such as maximum wave height and minimum wave trough, which have big impacts on the riser extreme response. The code recommended approach for irregular wave simulation is based on the linear wave theory, which can ensure the match of the target wave spectrum, for example, Hs, Tp (or Tz), wave peakness for JONSWAP spectrum. But the variation of simulated individual wave properties to the specified value can be significant or there is no specified value to match. The simulated irregular waves based on linear theory is also a distortion to the real wave elevation time trace, such as the asymmetry of the wave crest and trough, especially for the tropical cyclone sea states. Some riser response, such as the compression load at riser touch down zone, can be significantly impacted by the nonlinear nature of the waves and the variation to the target individual wave properties.\n This paper will discuss the random wave simulation and its impacts on riser dynamic response. A SCR strength design case is presented for illustration in this paper. Key parameters are identified to show the correlation with the SCR dynamic response. The conclusion is finally drawn from the work presented in this paper.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Pipelines, Risers, and Subsea Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-19032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Steel Catenary Risers (SCRs) are widely used in deepwater and ultra-deepwater field developments. The dynamic strength of SCRs is a concern in terms of the global performance. The analysis results are quite scattered in many cases due to the nature of the irregular wave stochastic properties. The widely accepted approach to predict the riser dynamic response in the irregular seas is to run the multiple time domain simulations based on different random seeds. This paper will address the impacts on the predicted riser dynamic response due to the random seeds selection. The discussion is based on the independent engineering verification work for a production Semi project in South China Sea. The site specific irregular waves are usually defined by not only the wave spectrum, but also the properties of individual waves, such as maximum wave height and minimum wave trough, which have big impacts on the riser extreme response. The code recommended approach for irregular wave simulation is based on the linear wave theory, which can ensure the match of the target wave spectrum, for example, Hs, Tp (or Tz), wave peakness for JONSWAP spectrum. But the variation of simulated individual wave properties to the specified value can be significant or there is no specified value to match. The simulated irregular waves based on linear theory is also a distortion to the real wave elevation time trace, such as the asymmetry of the wave crest and trough, especially for the tropical cyclone sea states. Some riser response, such as the compression load at riser touch down zone, can be significantly impacted by the nonlinear nature of the waves and the variation to the target individual wave properties. This paper will discuss the random wave simulation and its impacts on riser dynamic response. A SCR strength design case is presented for illustration in this paper. Key parameters are identified to show the correlation with the SCR dynamic response. The conclusion is finally drawn from the work presented in this paper.
不规则波模拟及其对生产半挂隔水管极端响应的影响
钢链链管(scr)广泛应用于深水和超深水油田开发。scr的动态强度在全局性能方面是一个值得关注的问题。由于不规则波的随机特性,在许多情况下分析结果是相当分散的。预测不规则海域隔水管动态响应的常用方法是基于不同的随机种子进行多时域模拟。本文将讨论随机选种对预测立管动态响应的影响。本文的讨论是基于对中国南海某生产型半井项目的独立工程验证工作。场地特定不规则波通常不仅由波谱来定义,还包括单个波的特性,如最大波高和最小波谷,这些特性对隔水管极端响应有很大影响。代码推荐的不规则波模拟方法基于线性波理论,可以保证目标波谱的匹配,例如,JONSWAP谱的Hs, Tp(或Tz),波峰。但是,模拟的单个波的特性与规定值的变化可能很大,或者没有规定值可以匹配。基于线性理论模拟的不规则波浪也是对真实波浪高程时迹的一种扭曲,如波峰和波谷的不对称性,特别是对于热带气旋海态。一些隔水管响应,如隔水管触地区的压缩载荷,会受到波的非线性特性和目标单个波特性变化的显著影响。本文将讨论随机波模拟及其对隔水管动力响应的影响。本文给出了一个SCR强度设计实例。确定了关键参数,以显示与可控硅动态响应的相关性。最后,从本文的工作中得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信