Comparison of Binary Classification Based on Signed Distance Functions with Support Vector Machines

E. Boczko, Todd R. Young, Minhui Zie, Di Wu
{"title":"Comparison of Binary Classification Based on Signed Distance Functions with Support Vector Machines","authors":"E. Boczko, Todd R. Young, Minhui Zie, Di Wu","doi":"10.1109/OCCBIO.2009.30","DOIUrl":null,"url":null,"abstract":"We compare methods based on the Signed Distance Function (SDF) a new tool for binary classification with standard Support Vector Machine (SVM) methods. We demonstrate on several sets of micro-array data that the performance of the SDF based methods can match or exceed that of SVM methods.","PeriodicalId":231499,"journal":{"name":"2009 Ohio Collaborative Conference on Bioinformatics","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ohio Collaborative Conference on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCCBIO.2009.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We compare methods based on the Signed Distance Function (SDF) a new tool for binary classification with standard Support Vector Machine (SVM) methods. We demonstrate on several sets of micro-array data that the performance of the SDF based methods can match or exceed that of SVM methods.
基于符号距离函数的二值分类与支持向量机的比较
我们将基于签名距离函数(SDF)的二值分类方法与标准支持向量机(SVM)方法进行了比较。我们在几组微阵列数据上证明了基于SDF的方法的性能可以匹配或超过支持向量机方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信