Multi-resolution Mean-Shift Algorithm for Vector Quantization

P. Bouttefroy, A. Bouzerdoum, Azeddine Beghdadi, S. L. Phung
{"title":"Multi-resolution Mean-Shift Algorithm for Vector Quantization","authors":"P. Bouttefroy, A. Bouzerdoum, Azeddine Beghdadi, S. L. Phung","doi":"10.1109/DCC.2010.55","DOIUrl":null,"url":null,"abstract":"This paper presents a new multi-resolution mean-shift algorithm for vector quantization of high-resolution images and generation of a stratified codebook. The algorithm employs the discrete wavelet transform (DWT) to circumvent the problem of bandwidth selection with the mean-shift algorithm. Here, the mean-shift algorithm is applied to a reduced set of samples in the color space. The detection of salient edges is performed on the DWT subbands for each level of decomposition to identify the pixels escaping the basin of attraction. The quantized image is reconstructed by upward interpolation of the salient pixels in the feature space. We also propose a Modified-Weighted mean-shift algorithm to speed up the image reconstruction stage. Experiments show that the proposed multi-resolution mean-shift provides significant speed-up compared to the Linde-Buzo-Gray (LBG) algorithm.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new multi-resolution mean-shift algorithm for vector quantization of high-resolution images and generation of a stratified codebook. The algorithm employs the discrete wavelet transform (DWT) to circumvent the problem of bandwidth selection with the mean-shift algorithm. Here, the mean-shift algorithm is applied to a reduced set of samples in the color space. The detection of salient edges is performed on the DWT subbands for each level of decomposition to identify the pixels escaping the basin of attraction. The quantized image is reconstructed by upward interpolation of the salient pixels in the feature space. We also propose a Modified-Weighted mean-shift algorithm to speed up the image reconstruction stage. Experiments show that the proposed multi-resolution mean-shift provides significant speed-up compared to the Linde-Buzo-Gray (LBG) algorithm.
矢量量化的多分辨率Mean-Shift算法
提出了一种新的多分辨率均值移位算法,用于高分辨率图像的矢量量化和分层码本的生成。该算法采用离散小波变换(DWT)来解决均值移位算法的带宽选择问题。在这里,mean-shift算法被应用于颜色空间中减少的一组样本。在每一级分解的DWT子带上进行显著边缘检测,以识别逃离吸引力盆地的像素。通过特征空间中显著像素的向上插值重构量化后的图像。我们还提出了一种改进加权均值移位算法来加快图像重建阶段。实验表明,与LBG (Linde-Buzo-Gray)算法相比,所提出的多分辨率均值移位算法具有显著的提速效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信