{"title":"Nanoparticle Formation and Deposition by Pulsed Laser Ablation","authors":"T. Takiya, Naoaki Fukuda","doi":"10.5772/intechopen.95299","DOIUrl":null,"url":null,"abstract":"Pulsed Laser Ablation (PLA) in background gas is a good technique to acquire specific nanoparticles under strong non-equilibrium states. Here, after a history of PLA is mentioned, the application of nanoparticles and its deposition films to the several fields will be described. On the target surface heated with PLA, a Knudsen layer is formed around the adjacent region of the surface, and high-pressure and high-temperature vapor atoms are generated. The plume formed by evaporated atoms blasts off with very high-speed and expands rapidly with a shock wave. A supercooling phenomenon occurs during this process, and number of nucleus of nanoparticle forms in vapor-phase. The nuclei grow by the condensation of vapor atoms and deposit on a substrate as nanoparticle film. If the radius of nanoparticle is uniformized, a self-ordering formation can be shown as a result of interactive process between each nanoparticle of the same size on the substrate. In this chapter, the related technology to realize a series of these processes will be expounded.","PeriodicalId":108300,"journal":{"name":"Practical Applications of Laser Ablation","volume":"889 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Applications of Laser Ablation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.95299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pulsed Laser Ablation (PLA) in background gas is a good technique to acquire specific nanoparticles under strong non-equilibrium states. Here, after a history of PLA is mentioned, the application of nanoparticles and its deposition films to the several fields will be described. On the target surface heated with PLA, a Knudsen layer is formed around the adjacent region of the surface, and high-pressure and high-temperature vapor atoms are generated. The plume formed by evaporated atoms blasts off with very high-speed and expands rapidly with a shock wave. A supercooling phenomenon occurs during this process, and number of nucleus of nanoparticle forms in vapor-phase. The nuclei grow by the condensation of vapor atoms and deposit on a substrate as nanoparticle film. If the radius of nanoparticle is uniformized, a self-ordering formation can be shown as a result of interactive process between each nanoparticle of the same size on the substrate. In this chapter, the related technology to realize a series of these processes will be expounded.