Fuzzy Maneuvering Controller Optimization Using an Optimum Differential-Drive Mobile Robot Model

Thiago de A. Ushikoshi, L. L. Carneiro, P. Coutinho, T. Chagas, L. Schnitman
{"title":"Fuzzy Maneuvering Controller Optimization Using an Optimum Differential-Drive Mobile Robot Model","authors":"Thiago de A. Ushikoshi, L. L. Carneiro, P. Coutinho, T. Chagas, L. Schnitman","doi":"10.17648/sbai-2019-111495","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for improving the performance of a fuzzy controller applied to a Differential-Drive Mobile Robot. From previously recorded data, the DDMR model is improved through Particle Swarm Optimization aiming to obtain a better representation of the real system. The PSO algorithm is also applied to adjust the fuzzy controller parameters so that trajectory tracking error is minimized. The manually adjusted controller settings are compared to the optimized’s in terms of Root Mean Square Error of trajectory tracking, control effort and acceleration. The latter is useful for protecting the robot from damage caused by abrupt variations. Numerical simulations show that the optimized model can describe better the real system behavior and the optimized controller can lead the robot dynamic model to track the given trajectory more accurately, with reduced control effort, and smoother velocity variation than the non-optimized controller.","PeriodicalId":130927,"journal":{"name":"Anais do 14º Simpósio Brasileiro de Automação Inteligente","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do 14º Simpósio Brasileiro de Automação Inteligente","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17648/sbai-2019-111495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method for improving the performance of a fuzzy controller applied to a Differential-Drive Mobile Robot. From previously recorded data, the DDMR model is improved through Particle Swarm Optimization aiming to obtain a better representation of the real system. The PSO algorithm is also applied to adjust the fuzzy controller parameters so that trajectory tracking error is minimized. The manually adjusted controller settings are compared to the optimized’s in terms of Root Mean Square Error of trajectory tracking, control effort and acceleration. The latter is useful for protecting the robot from damage caused by abrupt variations. Numerical simulations show that the optimized model can describe better the real system behavior and the optimized controller can lead the robot dynamic model to track the given trajectory more accurately, with reduced control effort, and smoother velocity variation than the non-optimized controller.
基于最优差动驱动移动机器人模型的模糊机动控制器优化
本文提出了一种改进差动驱动移动机器人模糊控制器性能的方法。在已有记录数据的基础上,通过粒子群优化对DDMR模型进行改进,以更好地表征实际系统。利用粒子群算法对模糊控制器参数进行调整,使轨迹跟踪误差最小。将手动调整后的控制器设置与优化后的控制器设置在轨迹跟踪、控制努力和加速度的均方根误差方面进行了比较。后者对于保护机器人免受突变引起的损坏是有用的。数值仿真结果表明,优化后的模型能更好地描述系统的真实行为,优化后的控制器能使机器人动力学模型比未优化的控制器更准确地跟踪给定轨迹,控制工作量更小,速度变化更平稳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信