An efficient algorithm for automatic fusion of RISAT-1 SAR data and Resourcesat-2 optical images

Indranil Misra, R. K. Gambhir, Manthira Moorthi Subbiah, D. Dhar, R. Ramakrishnan
{"title":"An efficient algorithm for automatic fusion of RISAT-1 SAR data and Resourcesat-2 optical images","authors":"Indranil Misra, R. K. Gambhir, Manthira Moorthi Subbiah, D. Dhar, R. Ramakrishnan","doi":"10.1109/IHCI.2012.6481838","DOIUrl":null,"url":null,"abstract":"Satellite Image fusion generates single hybrid image from a collection of input satellite images and helps us to extract maximum information from the remotely sensed datasets to achieve optimal spatial and spectral resolution. The critical steps of image fusion framework are co-registration of Synthetic Aperture Radar(SAR) data with corresponding optical scene, enhance the images for visual clarity and then merge the multi sensor data with a standard fusion technique. The image fusion system should perform all these steps in an automatic manner for providing ease to the user. The primary attention of this work is to examine the improvement that can be obtained by fusion of low resolution multi spectral data obtained from optical Resourcesat-2 platform (LISS-4MX/LISS-III/AWIFS Sensor having 5m/24m/56m spatial resolution) with high resolution RISAT-1 (Fine Resolution STRIPMAP (FRS-1)/Medium Resolution SCANSAR(MRS) mode data having 3m/18m spatial resolution) using SAR-Optical image fusion system discussed above. This integration of optical and SAR images from Indian Remote Sensing satellites facilitates better visual and automatic image interpretation. The Maximum Likelihood algorithm is used for classification of fused image and Resourcesat-2 multispectral data. The quality improvement of the fused product can be observed by comparing the classification accuracies of merged data with original multispectral data of the same region.","PeriodicalId":107245,"journal":{"name":"2012 4th International Conference on Intelligent Human Computer Interaction (IHCI)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th International Conference on Intelligent Human Computer Interaction (IHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHCI.2012.6481838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Satellite Image fusion generates single hybrid image from a collection of input satellite images and helps us to extract maximum information from the remotely sensed datasets to achieve optimal spatial and spectral resolution. The critical steps of image fusion framework are co-registration of Synthetic Aperture Radar(SAR) data with corresponding optical scene, enhance the images for visual clarity and then merge the multi sensor data with a standard fusion technique. The image fusion system should perform all these steps in an automatic manner for providing ease to the user. The primary attention of this work is to examine the improvement that can be obtained by fusion of low resolution multi spectral data obtained from optical Resourcesat-2 platform (LISS-4MX/LISS-III/AWIFS Sensor having 5m/24m/56m spatial resolution) with high resolution RISAT-1 (Fine Resolution STRIPMAP (FRS-1)/Medium Resolution SCANSAR(MRS) mode data having 3m/18m spatial resolution) using SAR-Optical image fusion system discussed above. This integration of optical and SAR images from Indian Remote Sensing satellites facilitates better visual and automatic image interpretation. The Maximum Likelihood algorithm is used for classification of fused image and Resourcesat-2 multispectral data. The quality improvement of the fused product can be observed by comparing the classification accuracies of merged data with original multispectral data of the same region.
一种RISAT-1 SAR数据与Resourcesat-2光学图像自动融合的有效算法
卫星图像融合从输入的卫星图像集合中生成单个混合图像,并帮助我们从遥感数据集中提取最大信息,以实现最佳的空间和光谱分辨率。图像融合框架的关键步骤是将合成孔径雷达(SAR)数据与相应的光学场景进行共配准,增强图像的视觉清晰度,然后采用标准融合技术将多传感器数据进行融合。图像融合系统应以自动方式执行所有这些步骤,以便为用户提供便利。本工作的主要重点是研究使用上述sar -光学图像融合系统将光学资源2平台(LISS-4MX/LISS-III/AWIFS传感器具有5米/24米/56米空间分辨率)获得的低分辨率多光谱数据与高分辨率RISAT-1(精细分辨率STRIPMAP (FRS-1)/中分辨率SCANSAR(MRS)模式数据具有3米/18米空间分辨率)进行融合所能获得的改进。这种来自印度遥感卫星的光学和SAR图像的集成有助于更好的视觉和自动图像解释。采用最大似然算法对融合图像和Resourcesat-2多光谱数据进行分类。将融合后的数据与同一区域原始多光谱数据的分类精度进行比较,可以观察到融合后产品质量的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信