The complexity of tree automata and logics of programs

E. Emerson, C. Jutla
{"title":"The complexity of tree automata and logics of programs","authors":"E. Emerson, C. Jutla","doi":"10.1109/SFCS.1988.21949","DOIUrl":null,"url":null,"abstract":"The computational complexity of testing nonemptiness of finite-state automata on infinite trees is investigated. It is shown that for tree automata with m states and n pairs nonemptiness can be tested in time O((mn)/sup 3n/), even though the problem is in general NP-complete. The nonemptiness algorithm is used to obtain exponentially improved, essentially tight upper bounds for numerous important modal logics of programs, interpreted with the usual semantics over structures generated by binary relations. For example, it is shown that satisfiability for the full branching time logic CTL* can be tested in deterministic double exponential time. It also follows that satisfiability for propositional dynamic logic with a repetition construct (PDL-delta) and for the propositional mu-calculus (L mu ) can be tested in deterministic single exponential time.<<ETX>>","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"510","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 510

Abstract

The computational complexity of testing nonemptiness of finite-state automata on infinite trees is investigated. It is shown that for tree automata with m states and n pairs nonemptiness can be tested in time O((mn)/sup 3n/), even though the problem is in general NP-complete. The nonemptiness algorithm is used to obtain exponentially improved, essentially tight upper bounds for numerous important modal logics of programs, interpreted with the usual semantics over structures generated by binary relations. For example, it is shown that satisfiability for the full branching time logic CTL* can be tested in deterministic double exponential time. It also follows that satisfiability for propositional dynamic logic with a repetition construct (PDL-delta) and for the propositional mu-calculus (L mu ) can be tested in deterministic single exponential time.<>
树自动机的复杂性和程序的逻辑性
研究了在无限树上检验有限状态自动机非空性的计算复杂度。证明了对于具有m个状态和n对的树自动机,即使问题一般是np完全的,也可以在O((mn)/sup 3n/)时间内检验非空性。非空算法用于获得许多重要的程序模态逻辑的指数改进的、本质上紧密的上界,用通常的由二元关系生成的结构上的语义来解释。例如,证明了全分支时间逻辑CTL*在确定性双指数时间下的可满足性。此外,具有重复构造的命题动态逻辑(PDL-delta)和命题mu-calculus (L mu)的可满足性可以在确定性单指数时间内进行检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信