{"title":"Fine-Tuning BERT for Question and Answering Using PubMed Abstract Dataset","authors":"Saeyeon Cheon, Insung Ahn","doi":"10.23919/APSIPAASC55919.2022.9980097","DOIUrl":null,"url":null,"abstract":"The coronavirus, which first originated in China in 2019, spread worldwide and eventually reached a pandemic situation. In the interest of many people, misinformation about the coronavirus has been pouring out on the Internet. We developed a Q&A processing technique by building a dataset based on the PubMed paper abstract for people to easily get the right information. We fine-tuned BioBERT among the BERT models that reached SOTA performance in the biomedical Q&A task. It answered questions about coronavirus with high accuracy. In the future, we will develop our technology that can handle Q&A not only in English but also in multiple languages. This work will contribute to helping people who speak different languages easily obtain correct information amidst confusing data.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9980097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The coronavirus, which first originated in China in 2019, spread worldwide and eventually reached a pandemic situation. In the interest of many people, misinformation about the coronavirus has been pouring out on the Internet. We developed a Q&A processing technique by building a dataset based on the PubMed paper abstract for people to easily get the right information. We fine-tuned BioBERT among the BERT models that reached SOTA performance in the biomedical Q&A task. It answered questions about coronavirus with high accuracy. In the future, we will develop our technology that can handle Q&A not only in English but also in multiple languages. This work will contribute to helping people who speak different languages easily obtain correct information amidst confusing data.