Concurrent optimization of parameter and tolerance design based on the two-stage Bayesian sampling method

Yan Ma, Jianjun Wang, Yiliu (Paul) Tu
{"title":"Concurrent optimization of parameter and tolerance design based on the two-stage Bayesian sampling method","authors":"Yan Ma, Jianjun Wang, Yiliu (Paul) Tu","doi":"10.1080/16843703.2023.2165290","DOIUrl":null,"url":null,"abstract":"ABSTRACT Researchers usually expect to reduce costs while improving product robustness in product quality design. The concurrent optimization of parameter and tolerance design assumes that the output response follows a normal distribution. However, non-normal responses are also common in product quality design. As for the concurrent optimization of parameter and tolerance design with a non-normal response, a novel total cost function based on the two-stage Bayesian sampling method is proposed in this paper. First, the hierarchical Bayesian model constructs the functional relationship between output response, input factors, and tolerance variables. Secondly, a two-stage Bayesian sampling method is used to obtain the simulated values of the output responses. The simulated response values are used to build the rejection cost and quality loss functions. Then, the genetic algorithm is used to optimize the constructed total cost model, including the tolerance cost, rejection cost, and quality loss. Finally, the effectiveness of the proposed method is demonstrated by two examples. The research results show that the proposed method in this paper can effectively improve product quality and reduce manufacturing costs when considering the uncertainty of model parameters and the variation of the output response.","PeriodicalId":229439,"journal":{"name":"Quality Technology & Quantitative Management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Technology & Quantitative Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16843703.2023.2165290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Researchers usually expect to reduce costs while improving product robustness in product quality design. The concurrent optimization of parameter and tolerance design assumes that the output response follows a normal distribution. However, non-normal responses are also common in product quality design. As for the concurrent optimization of parameter and tolerance design with a non-normal response, a novel total cost function based on the two-stage Bayesian sampling method is proposed in this paper. First, the hierarchical Bayesian model constructs the functional relationship between output response, input factors, and tolerance variables. Secondly, a two-stage Bayesian sampling method is used to obtain the simulated values of the output responses. The simulated response values are used to build the rejection cost and quality loss functions. Then, the genetic algorithm is used to optimize the constructed total cost model, including the tolerance cost, rejection cost, and quality loss. Finally, the effectiveness of the proposed method is demonstrated by two examples. The research results show that the proposed method in this paper can effectively improve product quality and reduce manufacturing costs when considering the uncertainty of model parameters and the variation of the output response.
基于两阶段贝叶斯抽样法的参数与公差设计并行优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信