Computer Vision with 3D Point Cloud Data: Methods, Datasets and Challenges

Amila Akagic, Senka Krivic, Harun Dizdar, J. Velagić
{"title":"Computer Vision with 3D Point Cloud Data: Methods, Datasets and Challenges","authors":"Amila Akagic, Senka Krivic, Harun Dizdar, J. Velagić","doi":"10.1109/ICAT54566.2022.9811120","DOIUrl":null,"url":null,"abstract":"The scientific discipline of Computer Vision (CV) is a fast developing branch of Machine Learning (ML). It addresses various tasks important for robotics, medicine, autonomous driving, surveillance, security or scene understanding. The development of sensor technologies enabled wide usage of 3D sensors, and therefore, it increased the interest of the CV research community in creating methods for 3D sensor data. This paper outlines seven CV tasks with 3D point cloud data, state-of-the-art techniques, and datasets. Additionally, we identify key challenges.","PeriodicalId":414786,"journal":{"name":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT54566.2022.9811120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The scientific discipline of Computer Vision (CV) is a fast developing branch of Machine Learning (ML). It addresses various tasks important for robotics, medicine, autonomous driving, surveillance, security or scene understanding. The development of sensor technologies enabled wide usage of 3D sensors, and therefore, it increased the interest of the CV research community in creating methods for 3D sensor data. This paper outlines seven CV tasks with 3D point cloud data, state-of-the-art techniques, and datasets. Additionally, we identify key challenges.
计算机视觉与3D点云数据:方法,数据集和挑战
计算机视觉(CV)是机器学习(ML)的一个快速发展的分支。它解决了机器人、医学、自动驾驶、监控、安全或场景理解等各种重要任务。传感器技术的发展使3D传感器得到了广泛的应用,因此,它增加了CV研究界对创建3D传感器数据方法的兴趣。本文概述了七个CV任务与3D点云数据,最先进的技术,和数据集。此外,我们还确定了主要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信