Collaborative filtering inspired from language modeling

Geoffray Bonnin, A. Brun, A. Boyer
{"title":"Collaborative filtering inspired from language modeling","authors":"Geoffray Bonnin, A. Brun, A. Boyer","doi":"10.1109/ICADIWT.2008.4664343","DOIUrl":null,"url":null,"abstract":"Recommender systems filter resources for a given user by predicting the most pertinent item given a specific context. This paper describes a new approach of generating suitable recommendations based on the active user's navigation stream. The underlying hypothesis is that the items order in the stream results from the intrinsic logic of the user's behavior. We show similarities between natural language and Internet navigation and put forward navigation specificities. We then design a new model that integrates advantages of statistical language models such as n-grams and triggers to compute recommendations. The resulting Sequence Based Recommender has been tested on Internet navigation artificial corpora.","PeriodicalId":189871,"journal":{"name":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADIWT.2008.4664343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recommender systems filter resources for a given user by predicting the most pertinent item given a specific context. This paper describes a new approach of generating suitable recommendations based on the active user's navigation stream. The underlying hypothesis is that the items order in the stream results from the intrinsic logic of the user's behavior. We show similarities between natural language and Internet navigation and put forward navigation specificities. We then design a new model that integrates advantages of statistical language models such as n-grams and triggers to compute recommendations. The resulting Sequence Based Recommender has been tested on Internet navigation artificial corpora.
受语言建模启发的协同过滤
推荐系统通过预测给定上下文中最相关的项目来为给定用户过滤资源。本文描述了一种基于活跃用户导航流生成合适推荐的新方法。潜在的假设是,流中的项目顺序源于用户行为的内在逻辑。我们指出了自然语言与网络导航的相似性,并提出了导航的特殊性。然后,我们设计了一个新的模型,该模型集成了统计语言模型(如n-grams和触发器)的优点来计算推荐。所得到的基于序列的推荐器在互联网导航人工语料库上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信