Pearl: Towards Optimization of DNN-accelerators Via Closed-Form Analytical Representation

Arko Dutt, Suprojit Nandy, Mays Sabry
{"title":"Pearl: Towards Optimization of DNN-accelerators Via Closed-Form Analytical Representation","authors":"Arko Dutt, Suprojit Nandy, Mays Sabry","doi":"10.1109/ASP-DAC52403.2022.9712598","DOIUrl":null,"url":null,"abstract":"Hardware accelerators for deep learning are proliferating, owing to their high-speed and energy-efficient execution of deep neural network (DNN) workloads. Ensuring an efficient DNN accelerator design requires a vast design-space exploration of a large number of parameters. However, current exploration frameworks are limited by slow architectural simulations, which limit the number of design points to be examined. To address this challenge, in this paper we introduce Pearl, an analytical representation of executing the DNN inference, mapped to an accelerator. Pearl provides immediate estimates of performance and energy of DNN accelerators, where we incorporate new parameters to capture dataflow mapping schemes beneficial for DNN systems. We model equations that represent utilization rates of the compute fabric for different dataflow mappings. We validate the accuracy of our equations against a state-of-the-art cycle-accurate DNN hardware simulator. Results show that Pearl achieves $< 1.0\\%$ and $< 1.3\\%$ average error in performance and energy estimates, respectively, while achieving $> 1.2\\cdot 10^{7}\\times$ simulation speedup. Pearl shows higher average accuracy than existing analytical models that support the simulator. We also leverage Pearl to explore and optimize area-constrained DNN accelerators targeting inference on full HD resolution.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC52403.2022.9712598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hardware accelerators for deep learning are proliferating, owing to their high-speed and energy-efficient execution of deep neural network (DNN) workloads. Ensuring an efficient DNN accelerator design requires a vast design-space exploration of a large number of parameters. However, current exploration frameworks are limited by slow architectural simulations, which limit the number of design points to be examined. To address this challenge, in this paper we introduce Pearl, an analytical representation of executing the DNN inference, mapped to an accelerator. Pearl provides immediate estimates of performance and energy of DNN accelerators, where we incorporate new parameters to capture dataflow mapping schemes beneficial for DNN systems. We model equations that represent utilization rates of the compute fabric for different dataflow mappings. We validate the accuracy of our equations against a state-of-the-art cycle-accurate DNN hardware simulator. Results show that Pearl achieves $< 1.0\%$ and $< 1.3\%$ average error in performance and energy estimates, respectively, while achieving $> 1.2\cdot 10^{7}\times$ simulation speedup. Pearl shows higher average accuracy than existing analytical models that support the simulator. We also leverage Pearl to explore and optimize area-constrained DNN accelerators targeting inference on full HD resolution.
Pearl:通过封闭形式分析表示实现dnn加速器的优化
由于深度神经网络(DNN)工作负载的高速高效执行,用于深度学习的硬件加速器正在激增。确保有效的深度神经网络加速器设计需要对大量参数进行大量的设计空间探索。然而,当前的探索框架受到缓慢的架构模拟的限制,这限制了要检查的设计点的数量。为了解决这一挑战,在本文中,我们引入了Pearl,这是一种执行DNN推理的分析表示,映射到加速器上。Pearl提供了DNN加速器的性能和能量的即时估计,其中我们纳入了新的参数来捕获有利于DNN系统的数据流映射方案。我们对表示不同数据流映射的计算结构利用率的方程进行建模。我们在最先进的周期精确DNN硬件模拟器上验证了我们方程的准确性。结果表明,Pearl在性能和能量估计上分别实现了$< 1.0\%$和$< 1.3\%$的平均误差,同时实现了$> 1.2\cdot 10^{7}\倍$的模拟加速。Pearl显示出比支持模拟器的现有分析模型更高的平均精度。我们还利用Pearl来探索和优化针对全高清分辨率推理的区域受限DNN加速器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信