Sparse Least-Squares Methods in the Parallel Machine Learning (PML) Framework

R. Natarajan, Vikas Sindhwani, S. Tatikonda
{"title":"Sparse Least-Squares Methods in the Parallel Machine Learning (PML) Framework","authors":"R. Natarajan, Vikas Sindhwani, S. Tatikonda","doi":"10.1109/ICDMW.2009.106","DOIUrl":null,"url":null,"abstract":"We describe parallel methods for solving large-scale, high-dimensional, sparse least-squares problems that arise in machine learning applications such as document classification. The basic idea is to solve a two-class response problem using a fast regression technique based on minimizing a loss function, which consists of an empirical squared-error term, and one or more regularization terms. We consider the use of Lenclos-based methods for solving these regularized least-squares problems, with the parallel implementation in the Parallel MachineLearning (PML) framework, and performance results on the IBM Blue Gene/P parallel computer.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We describe parallel methods for solving large-scale, high-dimensional, sparse least-squares problems that arise in machine learning applications such as document classification. The basic idea is to solve a two-class response problem using a fast regression technique based on minimizing a loss function, which consists of an empirical squared-error term, and one or more regularization terms. We consider the use of Lenclos-based methods for solving these regularized least-squares problems, with the parallel implementation in the Parallel MachineLearning (PML) framework, and performance results on the IBM Blue Gene/P parallel computer.
并行机器学习框架中的稀疏最小二乘方法
我们描述了用于解决机器学习应用(如文档分类)中出现的大规模,高维,稀疏最小二乘问题的并行方法。其基本思想是使用基于最小化损失函数的快速回归技术来解决两类响应问题,损失函数由经验平方误差项和一个或多个正则化项组成。我们考虑使用基于lenclos的方法来解决这些正则化最小二乘问题,并在并行机器学习(PML)框架中并行实现,以及在IBM Blue Gene/P并行计算机上的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信