Secrecy Computation without Changing Polynomial Degree in Shamir's (K, N) Secret Sharing Scheme

Takeshi Shingu, Keiichi Iwamura, Kitahiro Kaneda
{"title":"Secrecy Computation without Changing Polynomial Degree in Shamir's (K, N) Secret Sharing Scheme","authors":"Takeshi Shingu, Keiichi Iwamura, Kitahiro Kaneda","doi":"10.5220/0005998800890094","DOIUrl":null,"url":null,"abstract":"In This Paper, We Propose a New Secrecy Multiplication Scheme without Changing the Degree in Shamir’s (K, N) Secret Sharing Scheme. This Scheme Generates a Scalar Value Called Concealed Secret, Which Multiplies a Secret by a Random Number, and Distributes the Concealed Secret by using a Secret Sharing Scheme. When Secrecy Multiplying, We Temporarily Reconstruct the Concealed Secret, and Multiply It with a Share. Therefore, We Can Perform Secrecy Multiplication without Changing the Degree of Polynomials by Multiplying a Polynomial and Scalar Value. Our Scheme Can Extend to Secrecy Division by Dividing a Share with the Concealed Secret. in Addition, We Propose Secrecy Addition and Subtraction Schemes. We Evaluate the Security of Our Schemes, and Show a Possible Application That Cannot Realized using the Conventional Scheme.","PeriodicalId":172337,"journal":{"name":"International Conference on Data Communication Networking","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Data Communication Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005998800890094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In This Paper, We Propose a New Secrecy Multiplication Scheme without Changing the Degree in Shamir’s (K, N) Secret Sharing Scheme. This Scheme Generates a Scalar Value Called Concealed Secret, Which Multiplies a Secret by a Random Number, and Distributes the Concealed Secret by using a Secret Sharing Scheme. When Secrecy Multiplying, We Temporarily Reconstruct the Concealed Secret, and Multiply It with a Share. Therefore, We Can Perform Secrecy Multiplication without Changing the Degree of Polynomials by Multiplying a Polynomial and Scalar Value. Our Scheme Can Extend to Secrecy Division by Dividing a Share with the Concealed Secret. in Addition, We Propose Secrecy Addition and Subtraction Schemes. We Evaluate the Security of Our Schemes, and Show a Possible Application That Cannot Realized using the Conventional Scheme.
Shamir (K, N)秘密共享方案中不改变多项式度的保密计算
在shamir的(K, N)秘密共享方案中,我们提出了一种新的不改变度数的秘密倍增方案。该方案生成一个称为隐藏秘密的标量值,该标量值将一个秘密乘以一个随机数,并使用秘密共享方案分发隐藏秘密。当秘密相乘时,我们暂时重构隐藏的秘密,并将其与份额相乘。因此,我们可以在不改变多项式阶数的情况下,通过多项式与标量值相乘来实现保密乘法。我们的方案可以推广到用隐藏的秘密来分割股份的保密划分。此外,我们还提出了保密加减方案。我们评估了我们的方案的安全性,并展示了使用传统方案无法实现的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信