Efficiency of real-time Gaussian transient detectors: comparing the Karhunen-Loeve and the wavelet decompositions

Francisco M. Garcia, I. Lourtie
{"title":"Efficiency of real-time Gaussian transient detectors: comparing the Karhunen-Loeve and the wavelet decompositions","authors":"Francisco M. Garcia, I. Lourtie","doi":"10.1109/ICASSP.2000.861941","DOIUrl":null,"url":null,"abstract":"In general, finite-dimensional discrete-time representations of continuous-time Gaussian transients is not complete. Such representations typically lead to suboptimal detectors, where the compromise between computational complexity and processor performance requires optimization, specially when real-time processing is mandatory. This paper proposes a procedure for the optimization of the processor parameters, using the Bhattacharyya distance to evaluate the resemblance between the original continuous-time signal and its finite dimensional discrete representation. Two different decompositions are analyzed and compared, namely the Karhunen-Loeve decomposition (KLD) and the discrete wavelet transform (DWT). It is shown that the DWT presents serious advantages when the signals to detect have a large number of important eigenvalues, which is often the case in some applications such as passive sonar.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.861941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In general, finite-dimensional discrete-time representations of continuous-time Gaussian transients is not complete. Such representations typically lead to suboptimal detectors, where the compromise between computational complexity and processor performance requires optimization, specially when real-time processing is mandatory. This paper proposes a procedure for the optimization of the processor parameters, using the Bhattacharyya distance to evaluate the resemblance between the original continuous-time signal and its finite dimensional discrete representation. Two different decompositions are analyzed and compared, namely the Karhunen-Loeve decomposition (KLD) and the discrete wavelet transform (DWT). It is shown that the DWT presents serious advantages when the signals to detect have a large number of important eigenvalues, which is often the case in some applications such as passive sonar.
实时高斯瞬态检测器的效率:Karhunen-Loeve分解与小波分解的比较
一般来说,连续高斯瞬态的有限维离散时间表示是不完整的。这种表示通常会导致次优检测器,其中计算复杂性和处理器性能之间的折衷需要优化,特别是在强制进行实时处理时。本文提出了一种优化处理器参数的方法,利用Bhattacharyya距离来评估原始连续时间信号与其有限维离散表示之间的相似性。对Karhunen-Loeve分解(KLD)和离散小波变换(DWT)两种不同的分解方法进行了分析和比较。结果表明,当待检测的信号具有大量重要特征值时,小波变换具有明显的优势,这在被动声纳等应用中是常见的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信