Modelling and forecasting recurrent recovery events on consumer loans

Richard Chamboko, J. Bravo
{"title":"Modelling and forecasting recurrent recovery events on consumer loans","authors":"Richard Chamboko, J. Bravo","doi":"10.1504/IJADS.2019.100440","DOIUrl":null,"url":null,"abstract":"Even though multiple failure-time data are ubiquitous in finance and economics especially in the credit risk domain, it is unfortunate that naive statistical techniques which ignore the subsequent events are commonly used to analyse such data. Applying standard statistical methods without addressing the recurrence of the events produces biased and inefficient estimates, thus offering erroneous predictions. We explore various ways of modelling and forecasting recurrent delinquency and recovery events on consumer loans. Using consumer loans data from a severely distressed economic environment, we illustrate and empirically compare extended Cox models for ordered recurrent recovery events. We highlight that accounting for multiple events proffers detailed information, thus providing a nuanced understanding of the recovery prognosis of delinquents. For ordered indistinguishable recurrent recovery events, we recommend using the Andersen and Gill (1982) model since it fits the assumptions and performs well on predicting recovery.","PeriodicalId":216414,"journal":{"name":"Int. J. Appl. Decis. Sci.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Decis. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJADS.2019.100440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Even though multiple failure-time data are ubiquitous in finance and economics especially in the credit risk domain, it is unfortunate that naive statistical techniques which ignore the subsequent events are commonly used to analyse such data. Applying standard statistical methods without addressing the recurrence of the events produces biased and inefficient estimates, thus offering erroneous predictions. We explore various ways of modelling and forecasting recurrent delinquency and recovery events on consumer loans. Using consumer loans data from a severely distressed economic environment, we illustrate and empirically compare extended Cox models for ordered recurrent recovery events. We highlight that accounting for multiple events proffers detailed information, thus providing a nuanced understanding of the recovery prognosis of delinquents. For ordered indistinguishable recurrent recovery events, we recommend using the Andersen and Gill (1982) model since it fits the assumptions and performs well on predicting recovery.
模拟和预测消费者贷款的周期性恢复事件
尽管多重失效时间数据在金融和经济学中普遍存在,特别是在信用风险领域,但不幸的是,忽略后续事件的幼稚统计技术通常用于分析此类数据。应用标准的统计方法而不处理事件的重复会产生有偏见和低效的估计,从而提供错误的预测。我们探索各种方法的建模和预测经常性拖欠和回收事件的消费贷款。使用严重陷入困境的经济环境中的消费贷款数据,我们对有序周期性复苏事件的扩展Cox模型进行了说明和经验比较。我们强调,会计多个事件提供了详细的信息,从而提供了一个细致入微的理解的恢复预后的拖欠。对于有序的不可区分的周期性恢复事件,我们建议使用Andersen和Gill(1982)模型,因为它符合假设,并且在预测恢复方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信