Geometrically adaptive numerical integration

B. Luft, V. Shapiro, I. Tsukanov
{"title":"Geometrically adaptive numerical integration","authors":"B. Luft, V. Shapiro, I. Tsukanov","doi":"10.1145/1364901.1364923","DOIUrl":null,"url":null,"abstract":"Numerical integration over solid domains often requires geometric adaptation to the solid's boundary. Traditional approaches employ hierarchical adaptive space decomposition, where the integration cells intersecting the boundary are either included or discarded based on their position with respect to the boundary and/or statistical measures. These techniques are inadequate when accurate integration near the boundary is particularly important. In boundary value problems, for instance, a small error in the boundary cells can lead to a large error in the computed field distribution.\n We propose a novel technique for exploiting the exact local geometry in boundary cells. A classification system similar to marching cubes is combined with a suitable parameterization of the boundary cell's geometry. We can then allocate integration points in boundary cells using the exact geometry instead of relying on statistical techniques. We show that the proposed geometrically adaptive integration technique yields greater accuracy with fewer integration points than previous techniques.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1364901.1364923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Numerical integration over solid domains often requires geometric adaptation to the solid's boundary. Traditional approaches employ hierarchical adaptive space decomposition, where the integration cells intersecting the boundary are either included or discarded based on their position with respect to the boundary and/or statistical measures. These techniques are inadequate when accurate integration near the boundary is particularly important. In boundary value problems, for instance, a small error in the boundary cells can lead to a large error in the computed field distribution. We propose a novel technique for exploiting the exact local geometry in boundary cells. A classification system similar to marching cubes is combined with a suitable parameterization of the boundary cell's geometry. We can then allocate integration points in boundary cells using the exact geometry instead of relying on statistical techniques. We show that the proposed geometrically adaptive integration technique yields greater accuracy with fewer integration points than previous techniques.
几何自适应数值积分
实体域上的数值积分通常需要对实体边界进行几何适应。传统的方法采用分层自适应空间分解,其中交叉边界的积分单元根据其相对于边界和/或统计度量的位置被包括或丢弃。当边界附近的精确积分特别重要时,这些技术是不够的。例如,在边值问题中,边界单元的小误差可能导致计算出的场分布的大误差。我们提出了一种利用边界单元精确局部几何的新技术。一个类似于行军立方体的分类系统结合了边界单元几何的合适参数化。然后,我们可以使用精确的几何图形来分配边界单元中的积分点,而不是依赖于统计技术。结果表明,所提出的几何自适应积分技术比以前的技术在积分点较少的情况下获得了更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信