{"title":"InAs Quantum Dot Molecule based Scalable Materials Platform","authors":"H. Carfagno, L. McCabe, J. Zide, M. Doty","doi":"10.1364/quantum.2022.qw2a.31","DOIUrl":null,"url":null,"abstract":"We report advancements in material growth, device design, and device fabrication that facilitate development of a scalable platform for quantum photonics using site-templated wavelength-tunable InAs quantum dot molecules to overcome spatial and spectral inhomogeneity.","PeriodicalId":369002,"journal":{"name":"Quantum 2.0 Conference and Exhibition","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum 2.0 Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/quantum.2022.qw2a.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We report advancements in material growth, device design, and device fabrication that facilitate development of a scalable platform for quantum photonics using site-templated wavelength-tunable InAs quantum dot molecules to overcome spatial and spectral inhomogeneity.