{"title":"Data-model validation of broadband normal mode reverberation model","authors":"Baiju M Nair, M. Padmanabham","doi":"10.1109/SYMPOL.2015.7581177","DOIUrl":null,"url":null,"abstract":"Normal Mode based reverberation model is developed and validated with observed shallow water reverberation data. The model is capable of handling surface and bottom reverberation as well as bi-static range-independent environment. The vertical directionality of the source and the towed array receiver beam patterns has been included in the model for replication of towed array sonar scenario. Experiments were conducted in shallow water (57m) site to study reverberation characteristics. One third octave band analysis using multirate filters and time frequency analysis were done to study the experimental reverberation characteristics. The effect of low frequency reverberation is dominant for almost 10 sec after the event, corresponding to a range of 7.5 km. This can be crucial factor in the design of low frequency active sonar especially in the shallow water scenario. Reverberation Data-Model validation of the broad band omni-directional source received at an omni-directional receiver is presented in this paper.","PeriodicalId":127848,"journal":{"name":"2015 International Symposium on Ocean Electronics (SYMPOL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Ocean Electronics (SYMPOL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYMPOL.2015.7581177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Normal Mode based reverberation model is developed and validated with observed shallow water reverberation data. The model is capable of handling surface and bottom reverberation as well as bi-static range-independent environment. The vertical directionality of the source and the towed array receiver beam patterns has been included in the model for replication of towed array sonar scenario. Experiments were conducted in shallow water (57m) site to study reverberation characteristics. One third octave band analysis using multirate filters and time frequency analysis were done to study the experimental reverberation characteristics. The effect of low frequency reverberation is dominant for almost 10 sec after the event, corresponding to a range of 7.5 km. This can be crucial factor in the design of low frequency active sonar especially in the shallow water scenario. Reverberation Data-Model validation of the broad band omni-directional source received at an omni-directional receiver is presented in this paper.