Estimating Time-Varying Networks With a State-Space Model

Shaowen Liu, M. Caporin, S. Paterlini
{"title":"Estimating Time-Varying Networks With a State-Space Model","authors":"Shaowen Liu, M. Caporin, S. Paterlini","doi":"10.2139/ssrn.3748283","DOIUrl":null,"url":null,"abstract":"We propose the use of state-space models (SSMs) to estimate dynamic spatial relationships from time series data. At each time step, the weight matrix, capturing the latent state, is updated by a spatial autoregressive model. Specifically, we consider two types of SSM: the first one calibrates the spatial model to a multivariate regression, while the second one updates the spatial matrix by leveraging the maximum likelihood (ML) estimation. Different filtering algorithms are proposed to estimate the state. The simulation results show that the first model performs robustly for all cases, while the performance of the second model is sensitive to the state dimension. In a real-world case study, we estimate the time-varying weight matrices with weekly credit default swap (CDS) data for 16 banks, and show that the methods can identify communities which are coherent with the country-driven partitions.","PeriodicalId":154391,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets Regulation (Topic)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets Regulation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3748283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose the use of state-space models (SSMs) to estimate dynamic spatial relationships from time series data. At each time step, the weight matrix, capturing the latent state, is updated by a spatial autoregressive model. Specifically, we consider two types of SSM: the first one calibrates the spatial model to a multivariate regression, while the second one updates the spatial matrix by leveraging the maximum likelihood (ML) estimation. Different filtering algorithms are proposed to estimate the state. The simulation results show that the first model performs robustly for all cases, while the performance of the second model is sensitive to the state dimension. In a real-world case study, we estimate the time-varying weight matrices with weekly credit default swap (CDS) data for 16 banks, and show that the methods can identify communities which are coherent with the country-driven partitions.
用状态空间模型估计时变网络
我们建议使用状态空间模型(ssm)来估计时间序列数据的动态空间关系。在每个时间步,捕获潜在状态的权重矩阵由空间自回归模型更新。具体来说,我们考虑了两种类型的SSM:第一种是将空间模型校准为多元回归,而第二种是通过利用最大似然(ML)估计来更新空间矩阵。提出了不同的滤波算法来估计状态。仿真结果表明,第一种模型对所有情况都具有鲁棒性,而第二种模型的性能对状态维数敏感。在现实世界的案例研究中,我们估计了16家银行每周信用违约互换(CDS)数据的时变权重矩阵,并表明该方法可以识别与国家驱动分区一致的社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信