Cristian M. Medina Coca, Brandon D. Sánchez Valencia, Emerson A. González Díaz, José L. Magaña-Chávez, Joel Cervantes Lozano, S. Balderas-Mata
{"title":"Zernike polynomials vs circular Bessel functions to represent aberrated wavefronts","authors":"Cristian M. Medina Coca, Brandon D. Sánchez Valencia, Emerson A. González Díaz, José L. Magaña-Chávez, Joel Cervantes Lozano, S. Balderas-Mata","doi":"10.1117/12.2676551","DOIUrl":null,"url":null,"abstract":"This research presents an alternative method to represent aberrated wavefronts based on circular Bessel functions. These wavefronts are obtained by means of a Shack-Hartmann wavefront sensor prototype, which was previously statistical validated according to the official Mexican standard. We show experimental results obtained from two wavefronts aberrated by two ophthalmic trial lenses; one of them has a spherical aberration of -1.0 diopter and the other one has a defocus aberration of +1.0 diopter. Both wavefronts are shown in terms of circular Bessel functions and compared with their corresponding representation in Zernike polynomials.","PeriodicalId":434863,"journal":{"name":"Optical Engineering + Applications","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2676551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents an alternative method to represent aberrated wavefronts based on circular Bessel functions. These wavefronts are obtained by means of a Shack-Hartmann wavefront sensor prototype, which was previously statistical validated according to the official Mexican standard. We show experimental results obtained from two wavefronts aberrated by two ophthalmic trial lenses; one of them has a spherical aberration of -1.0 diopter and the other one has a defocus aberration of +1.0 diopter. Both wavefronts are shown in terms of circular Bessel functions and compared with their corresponding representation in Zernike polynomials.