Research on Image Dimensionality Reduction Algorithms

Zulun He, Jingjun Zhang
{"title":"Research on Image Dimensionality Reduction Algorithms","authors":"Zulun He, Jingjun Zhang","doi":"10.1145/3502814.3502819","DOIUrl":null,"url":null,"abstract":"This paper summarizes the principle of the Scale Invariant Feature (SIFT), Principal Component Analysis (PCA), and PCANet. Also, the paper uses IPython to realize the similarity comparison using SIFT and handwriting recognization using PCANet, then calculate the precision and recall of the result. The main thing of the SIFT is to find the key point descriptor through the Scale-space, Gaussian Pyramid, and Difference of Gaussian Pyramid (DoG), while the primary purpose of PCA is to find the eigenvalue and eigenvector through calculating the covariance. The combination of the PCA and neuro network, PCANet is divided into three stages.","PeriodicalId":115172,"journal":{"name":"Proceedings of the 2021 4th International Conference on Sensors, Signal and Image Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 4th International Conference on Sensors, Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502814.3502819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper summarizes the principle of the Scale Invariant Feature (SIFT), Principal Component Analysis (PCA), and PCANet. Also, the paper uses IPython to realize the similarity comparison using SIFT and handwriting recognization using PCANet, then calculate the precision and recall of the result. The main thing of the SIFT is to find the key point descriptor through the Scale-space, Gaussian Pyramid, and Difference of Gaussian Pyramid (DoG), while the primary purpose of PCA is to find the eigenvalue and eigenvector through calculating the covariance. The combination of the PCA and neuro network, PCANet is divided into three stages.
图像降维算法研究
本文综述了尺度不变特征(SIFT)、主成分分析(PCA)和PCANet的基本原理。并利用ippython实现SIFT的相似度比较和PCANet的手写识别,计算结果的查准率和查全率。SIFT的主要目的是通过尺度空间、高斯金字塔和高斯金字塔差分(DoG)来找到关键点描述子,而PCA的主要目的是通过计算协方差来找到特征值和特征向量。将PCA与神经网络相结合,PCANet分为三个阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信