Multi-phase Identification in Microstructures Images Using a GPU Accelerated Fuzzy C-Means Segmentation

D. Onchis, D. Frunzaverde, Mihail Gaianu, Relu Ciubotariu
{"title":"Multi-phase Identification in Microstructures Images Using a GPU Accelerated Fuzzy C-Means Segmentation","authors":"D. Onchis, D. Frunzaverde, Mihail Gaianu, Relu Ciubotariu","doi":"10.1109/SYNASC.2014.86","DOIUrl":null,"url":null,"abstract":"This paper presents an effective algorithm for the identification of multiple phases in microstructures images. The procedure is based on an efficient image segmentation using the fuzzy c-means algorithm. Furthermore, the algorithm is accelerated on a GPU cluster in order to obtain optimal computing times for large size images. The results are compared on the same experimental images with the ones obtained from a commercial software and the accuracy of the proposed algorithm is demonstrated.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an effective algorithm for the identification of multiple phases in microstructures images. The procedure is based on an efficient image segmentation using the fuzzy c-means algorithm. Furthermore, the algorithm is accelerated on a GPU cluster in order to obtain optimal computing times for large size images. The results are compared on the same experimental images with the ones obtained from a commercial software and the accuracy of the proposed algorithm is demonstrated.
基于GPU加速模糊c均值分割的微结构图像多相识别
本文提出了一种有效的显微结构图像多相识别算法。该程序是基于一个有效的图像分割使用模糊c均值算法。此外,为了获得大尺寸图像的最佳计算时间,算法在GPU集群上进行了加速。在相同的实验图像上与商业软件得到的结果进行了比较,验证了算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信