An improved 2D cost aggregation method for advanced driver assistance systems

JeongMok Ha, Byeongchan Jeon, WooYeol Jun, Joonho Lee, Hong Jeong
{"title":"An improved 2D cost aggregation method for advanced driver assistance systems","authors":"JeongMok Ha, Byeongchan Jeon, WooYeol Jun, Joonho Lee, Hong Jeong","doi":"10.1109/IVS.2015.7225668","DOIUrl":null,"url":null,"abstract":"In advanced driver assistance systems, the stereo matching algorithm is the key resource to obtain depth information of outdoor scenes. Semi-Global Matching (SGM) is currently the most efficient stereo matching algorithm for outdoor environments. However, because the number of pixels is large, SGM uses only a subset of them when estimating the disparity of a pixel. To overcome this limitation, Cost Aggregation Table (CAT) was proposed which uses two-dimensional cost aggregation so as to utilize whole image information. In this paper, we propose improved global 2D cost aggregation methods by loosening aggregation constraints. It aggregates every cost in the whole image to estimate each disparity. Although our method aggregates every cost in the image, the computational complexity is the same as that of SGM and CAT. The proposed cost aggregation method achieves superior disparity accuracy compared to the SGM.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In advanced driver assistance systems, the stereo matching algorithm is the key resource to obtain depth information of outdoor scenes. Semi-Global Matching (SGM) is currently the most efficient stereo matching algorithm for outdoor environments. However, because the number of pixels is large, SGM uses only a subset of them when estimating the disparity of a pixel. To overcome this limitation, Cost Aggregation Table (CAT) was proposed which uses two-dimensional cost aggregation so as to utilize whole image information. In this paper, we propose improved global 2D cost aggregation methods by loosening aggregation constraints. It aggregates every cost in the whole image to estimate each disparity. Although our method aggregates every cost in the image, the computational complexity is the same as that of SGM and CAT. The proposed cost aggregation method achieves superior disparity accuracy compared to the SGM.
一种改进的二维成本聚合方法用于高级驾驶员辅助系统
在高级驾驶辅助系统中,立体匹配算法是获取室外场景深度信息的关键资源。半全局匹配(Semi-Global Matching, SGM)是目前室外环境下最有效的立体匹配算法。然而,由于像素的数量很大,SGM在估计像素的视差时只使用其中的一个子集。为了克服这一局限性,提出了成本聚合表(Cost Aggregation Table, CAT),该表采用二维成本聚合的方法来利用整个图像信息。本文通过放宽聚合约束,提出了改进的二维全局成本聚合方法。它将整个图像中的所有成本聚合起来,以估计每个差异。虽然我们的方法将图像中的每一个代价都聚集在一起,但计算复杂度与SGM和CAT相同。与SGM相比,本文提出的成本聚合方法具有更高的视差精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信