Rui Zhu, Ling Cai, Gengchen Mai, C. Shimizu, C. Fisher, K. Janowicz, Anna Lopez-Carr, A. Schroeder, M. Schildhauer, Yuanyuan Tian, Shirly Stephen, Zilong Liu
{"title":"Providing Humanitarian Relief Support through Knowledge Graphs","authors":"Rui Zhu, Ling Cai, Gengchen Mai, C. Shimizu, C. Fisher, K. Janowicz, Anna Lopez-Carr, A. Schroeder, M. Schildhauer, Yuanyuan Tian, Shirly Stephen, Zilong Liu","doi":"10.1145/3460210.3493581","DOIUrl":null,"url":null,"abstract":"Disasters are often unpredictable and complex events, requiring humanitarian organizations to understand and respond to many different issues simultaneously and immediately. Often the biggest challenge to improving the effectiveness of the response is quickly finding the right expert, with the right expertise concerning a specific disaster type/disaster and geographic region. To assist in achieving such a goal, this paper demonstrates a knowledge graph-based search engine developed on top of an expert knowledge graph. It accommodates three modes of information retrieval, including a follow-your-nose search, an expert similarity search, and a SPARQL query interface. We will demonstrate utilizing the system to rapidly navigate from a hazard event to a specific expert who may be helpful, for example. More importantly, as the data is fully integrated including links between hazards and their abstract topics, we can find experts who have relevant expertise while navigating the graph.","PeriodicalId":377331,"journal":{"name":"Proceedings of the 11th on Knowledge Capture Conference","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th on Knowledge Capture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460210.3493581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Disasters are often unpredictable and complex events, requiring humanitarian organizations to understand and respond to many different issues simultaneously and immediately. Often the biggest challenge to improving the effectiveness of the response is quickly finding the right expert, with the right expertise concerning a specific disaster type/disaster and geographic region. To assist in achieving such a goal, this paper demonstrates a knowledge graph-based search engine developed on top of an expert knowledge graph. It accommodates three modes of information retrieval, including a follow-your-nose search, an expert similarity search, and a SPARQL query interface. We will demonstrate utilizing the system to rapidly navigate from a hazard event to a specific expert who may be helpful, for example. More importantly, as the data is fully integrated including links between hazards and their abstract topics, we can find experts who have relevant expertise while navigating the graph.