Global Importance Sampling of Glossy Surfaces Using the Photon Map

J. Steinhurst, A. Lastra
{"title":"Global Importance Sampling of Glossy Surfaces Using the Photon Map","authors":"J. Steinhurst, A. Lastra","doi":"10.1109/RT.2006.280224","DOIUrl":null,"url":null,"abstract":"Importance sampling reduces the variance of Monte Carlo integration by focusing effort on the directions that contribute the most energy to the result. In this paper we present a computationally efficient global importance-sampling strategy. Final gather rays are generated in proportion to the product of all three factors of the rendering equation integrand: surface reflectance, incident radiance, and the cosine term. By focusing effort on those directions that contribute the most energy to the result, the variance is greatly reduced. To be suitable for an interactive system, the computational cost of generating samples and their associated probabilities must be low. Our method requires neither that the surface reflectance function be invertible, nor that an expensive calculation be performed after ray selection to evaluate the p.d.f. Building on Henrik Jensen's work, we use a photon map to estimate incident radiance. In this paper, we also use the photon map to render the final image. We compare our method to previous methods and conclude that our technique exhibits competitive variance reduction while requiring one fiftieth of the computation","PeriodicalId":158017,"journal":{"name":"2006 IEEE Symposium on Interactive Ray Tracing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Symposium on Interactive Ray Tracing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RT.2006.280224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Importance sampling reduces the variance of Monte Carlo integration by focusing effort on the directions that contribute the most energy to the result. In this paper we present a computationally efficient global importance-sampling strategy. Final gather rays are generated in proportion to the product of all three factors of the rendering equation integrand: surface reflectance, incident radiance, and the cosine term. By focusing effort on those directions that contribute the most energy to the result, the variance is greatly reduced. To be suitable for an interactive system, the computational cost of generating samples and their associated probabilities must be low. Our method requires neither that the surface reflectance function be invertible, nor that an expensive calculation be performed after ray selection to evaluate the p.d.f. Building on Henrik Jensen's work, we use a photon map to estimate incident radiance. In this paper, we also use the photon map to render the final image. We compare our method to previous methods and conclude that our technique exhibits competitive variance reduction while requiring one fiftieth of the computation
使用光子图对光滑表面进行全局重要采样
重要性抽样通过将精力集中在对结果贡献最大能量的方向上,减少了蒙特卡罗积分的方差。本文提出了一种计算效率高的全局重要抽样策略。最终的集合光线是根据渲染方程integrand的所有三个因素的乘积成比例产生的:表面反射率、入射辐射和余弦项。通过把精力集中在那些对结果贡献最大能量的方向上,差异就大大减少了。为了适合于交互系统,生成样本及其相关概率的计算成本必须很低。我们的方法既不要求表面反射率函数可逆,也不要求在射线选择后进行昂贵的计算来评估p.d.f。基于Henrik Jensen的工作,我们使用光子图来估计入射辐射。在本文中,我们也使用光子贴图来渲染最终的图像。我们将我们的方法与以前的方法进行比较,并得出结论,我们的技术在需要计算的五十分之一的情况下显示出竞争性的方差减少
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信