Adjutant bot: An evaluation of unit micromanagement tactics

N.St.J.F. Bowen, Jonathan Todd, G. Sukthankar
{"title":"Adjutant bot: An evaluation of unit micromanagement tactics","authors":"N.St.J.F. Bowen, Jonathan Todd, G. Sukthankar","doi":"10.1109/CIG.2013.6633664","DOIUrl":null,"url":null,"abstract":"Constructing an effective real-time strategy bot requires multiple interlocking elements including a well-designed architecture, efficient build order, and good strategic and tactical decision-making. However even when the bot's high-level strategy and resource allocation is sound, poor battlefield tactics can result in unnecessary losses. This paper focuses on the problem of avoiding troop loss by identifying good tactical groupings. Banding separated units together using UCT (Upper Confidence bounds applied to Trees) along with a learned reward model outperforms grouping heuristics at winning battles while preserving resources. This paper describes our findings in the context of the Adjutant bot design which won the best Newcomer honor at CIG 2012 and is the basis for our 2013 entry.","PeriodicalId":158902,"journal":{"name":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2013.6633664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Constructing an effective real-time strategy bot requires multiple interlocking elements including a well-designed architecture, efficient build order, and good strategic and tactical decision-making. However even when the bot's high-level strategy and resource allocation is sound, poor battlefield tactics can result in unnecessary losses. This paper focuses on the problem of avoiding troop loss by identifying good tactical groupings. Banding separated units together using UCT (Upper Confidence bounds applied to Trees) along with a learned reward model outperforms grouping heuristics at winning battles while preserving resources. This paper describes our findings in the context of the Adjutant bot design which won the best Newcomer honor at CIG 2012 and is the basis for our 2013 entry.
副官:对单位微观管理策略的评估
构建一个有效的实时战略bot需要多个环环相扣的元素,包括精心设计的架构、高效的构建顺序以及良好的战略和战术决策。然而,即使bot的高级战略和资源分配是合理的,糟糕的战场战术也会导致不必要的损失。本文主要研究通过确定好的战术分组来避免部队损失的问题。使用UCT(应用于树的上限置信界限)和学习奖励模型将分离的单位结合在一起,在赢得战斗的同时保留资源方面优于分组启发式。本文描述了我们在副官机器人设计背景下的发现,该机器人在2012年CIG上获得了最佳新人奖,也是我们2013年参赛的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信