Sampling techniques for Arabic Sentiment Classification: A Comparative Study

H. A. Addi, R. Ezzahir
{"title":"Sampling techniques for Arabic Sentiment Classification: A Comparative Study","authors":"H. A. Addi, R. Ezzahir","doi":"10.1145/3386723.3387899","DOIUrl":null,"url":null,"abstract":"Over the last decade, the web 2.0 has been shifting the web to turn it into an opinion platform. This results in a large amount of raw data that overwhelms human capacity to extract valuable knowledge without assistance of machines. In real world applications, sentiment analysis faces imbalanced data problem. To tackle this problem, sampling techniques have been proposed. In this paper, we focus on studying the performance of these techniques on Imbalanced Data of Arabic Sentiment. We then conduct a comparative evaluation using Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest (RF) as classification algorithms.","PeriodicalId":139072,"journal":{"name":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386723.3387899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Over the last decade, the web 2.0 has been shifting the web to turn it into an opinion platform. This results in a large amount of raw data that overwhelms human capacity to extract valuable knowledge without assistance of machines. In real world applications, sentiment analysis faces imbalanced data problem. To tackle this problem, sampling techniques have been proposed. In this paper, we focus on studying the performance of these techniques on Imbalanced Data of Arabic Sentiment. We then conduct a comparative evaluation using Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest (RF) as classification algorithms.
阿拉伯语情感分类的抽样技术:比较研究
在过去的十年里,web2.0已经把网络变成了一个意见平台。这导致了大量的原始数据,超出了人类在没有机器帮助的情况下提取有价值知识的能力。在实际应用中,情感分析面临着数据不平衡的问题。为了解决这个问题,人们提出了采样技术。在本文中,我们重点研究了这些技术在阿拉伯语情绪不平衡数据上的表现。然后,我们使用支持向量机(SVM)、朴素贝叶斯(NB)和随机森林(RF)作为分类算法进行比较评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信