STAR-CITY: semantic traffic analytics and reasoning for CITY

F. Lécué, Simone Tallevi-Diotallevi, Jer Hayes, Robert Tucker, V. Bicer, M. Sbodio, Pierpaolo Tommasi
{"title":"STAR-CITY: semantic traffic analytics and reasoning for CITY","authors":"F. Lécué, Simone Tallevi-Diotallevi, Jer Hayes, Robert Tucker, V. Bicer, M. Sbodio, Pierpaolo Tommasi","doi":"10.1145/2557500.2557537","DOIUrl":null,"url":null,"abstract":"This paper presents STAR-CITY, a system supporting semantic traffic analytics and reasoning for city. STAR-CITY, which integrates (human and machine-based) sensor data using variety of formats, velocities and volumes, has been designed to provide insight on historical and real-time traffic conditions, all supporting efficient urban planning. Our system demonstrates how the severity of road traffic congestion can be smoothly analyzed, diagnosed, explored and predicted using semantic web technologies. We present how semantic diagnosis and predictive reasoning, both using and interpreting semantics of data to deliver useful, accurate and consistent inferences, have been exploited and adapted systematized in an intelligent user interface. Our prototype of semantics-aware traffic analytics and reasoning, experimented in Dublin City Ireland, works and scales efficiently with historical together with real live and heterogeneous stream data.","PeriodicalId":287073,"journal":{"name":"Proceedings of the 19th international conference on Intelligent User Interfaces","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2557500.2557537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

This paper presents STAR-CITY, a system supporting semantic traffic analytics and reasoning for city. STAR-CITY, which integrates (human and machine-based) sensor data using variety of formats, velocities and volumes, has been designed to provide insight on historical and real-time traffic conditions, all supporting efficient urban planning. Our system demonstrates how the severity of road traffic congestion can be smoothly analyzed, diagnosed, explored and predicted using semantic web technologies. We present how semantic diagnosis and predictive reasoning, both using and interpreting semantics of data to deliver useful, accurate and consistent inferences, have been exploited and adapted systematized in an intelligent user interface. Our prototype of semantics-aware traffic analytics and reasoning, experimented in Dublin City Ireland, works and scales efficiently with historical together with real live and heterogeneous stream data.
星城:语义流量分析和推理的城市
本文介绍了一个支持城市语义交通分析和推理的系统STAR-CITY。STAR-CITY集成了(基于人和机器的)传感器数据,使用各种格式、速度和体积,旨在提供对历史和实时交通状况的洞察,所有这些都支持高效的城市规划。我们的系统展示了如何使用语义网络技术顺利地分析、诊断、探索和预测道路交通拥堵的严重程度。我们介绍了语义诊断和预测推理如何在智能用户界面中被利用和系统化,它们使用和解释数据的语义来提供有用、准确和一致的推理。我们的语义感知交通分析和推理原型,在爱尔兰都柏林市进行了实验,可以有效地将历史数据与真实的实时数据和异构流数据结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信